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Lunar lander:
• Lander coming down
• Disturbances during the way down
• Goal to land in a specified zone

What will be the path based on the initial 
conditions provided?

Theory: Non-Linear Dynamic System Example (easy example)
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[REF]: https://gym.openai.com/envs/#box2d
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Theory: Existing Applications (complex example)

4

Airborne Wind Energy drones
• Control of the wing shape is very 

complex

• Quantifying all responses of the 
system based on all the physics 
involved is a very long endeavor.

• Usage of the Koopman 
operator theory to simplify the 
whole problem.

[Ref]: https://airbornewindeurope.org/producing-energy-with-drones/

(Fonzi et al. 2019)
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Theory: Basic Concept

• At a high level, the Koopman operator maps the nonlinear 
dynamics from state space to linear dynamics in the higher-
dimensional space of functions (lifted space)
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[4] 
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Why Use a Deep Neural Network?

Challenge with current standard approach to approximate the 
Koopman Operator:

• Eigenfunctions of the Koopman operator can be arbitrarily complex
• Complex function will only be approximately represented in a finite basis
• Generally applied to single Dynamic systems
• Sensitive to noise in the data
• Can be unstable when interpolating between operating regime

Deep learning:
• Well-suited for representing arbitrarily complex functions
• Generalizable to scenarios with a variable number of objects
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(Brunton et al. 2021)
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Theory: Our Contribution
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Data pre-processing

Deep Neural Network Structure

Neural Network Output

Error – Loss Measurement

Usage of spectrogram images
 enrich the input dataset

Learns the basis function instead of approximate them
 Map the states forward in time (from initial non-linear to lifted linear dimension)

Controllable linear state space
 Simplified representation of the original nonlinear system 

Find an adequate N-dimension lifted space
 Minimize the predictive error for longer periods of time

Linear system usage Design a LQR controller
 Usage of the Linear systems within its accurate prediction range
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Data Collection and Pre-Processing
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Simple Pendulum Example
Collect Raw Data from time 𝑡𝑡 to time 𝑇𝑇

State Data: 𝑆𝑆1 = 𝜃𝜃𝑡𝑡:𝑇𝑇 , 𝑆𝑆2 = �̇�𝜃𝑡𝑡:𝑇𝑇
Control Data: U1 = 𝜏𝜏𝑡𝑡:𝑇𝑇

Any Non-Linear Dynamic System Generate Spectrogram Images 

S1

S…

SN
Xt Xt+1 XT-1 XTX…
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CNN Autoencoder Latent Representation Labeling
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Fully Connected Lifted State Labeling

𝑋𝑋𝑡𝑡
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𝑠𝑠1, … , 𝑠𝑠𝑘𝑘Raw Data 𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 Xt+1
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After training, remove decoder and use 
encoder to generate lifted state 

training and test datasets
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𝑠𝑠1, … , 𝑠𝑠𝑘𝑘 Raw Data
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Lifting DNN

𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡

Latent S1

Latent S…

Latent SK

DNN
Lifted

N-Dimension
representation

𝑠𝑠1, … , 𝑠𝑠𝑘𝑘Raw Data 𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙

𝜓𝜓𝑁𝑁( )

Finally, the lifting basis function 𝜓𝜓𝑁𝑁( )
between time steps is learned

𝜓𝜓𝑁𝑁 𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙

𝐿𝐿1 = 𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 − [𝐴𝐴𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 + 𝐵𝐵𝑈𝑈𝑡𝑡]

𝐿𝐿2 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐 𝐴𝐴,𝐵𝐵 )

𝐿𝐿𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑙𝑙 = 𝐿𝐿1 + 𝐿𝐿2

𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 = 𝐴𝐴𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 + 𝐵𝐵𝑈𝑈𝑡𝑡
𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 + 𝐷𝐷𝑈𝑈𝑡𝑡

𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟 𝑆𝑆𝑡𝑡𝑟𝑟𝑡𝑡𝐿𝐿 𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝑀𝑀 𝐿𝐿𝑀𝑀𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝑟𝑟𝑐𝑐𝑡𝑡𝐿𝐿𝑀𝑀𝑟𝑟𝑠𝑠



Data-Driven Model-Free System Identification for Complex Nonlinear Systems AuE 8930 Final Project

Image + Raw Data Results: Simple Pendulum
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Image + Raw Data Results: Simple Pendulum
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Future Work
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Refine hyperparameters, Modify Architecture with VAE’s 

Evaluate methods on higher order non-linear systems

Deploy methods to physical systems 
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Appendix
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Theory: Mathematical Overview

Consider a discrete-time, non-linear dynamic system
𝑥𝑥𝑡𝑡+1 = 𝐹𝐹(𝑥𝑥𝑡𝑡,𝐹𝐹𝑡𝑡)

Given a finite set of states 𝑥𝑥𝑡𝑡 and control inputs 𝐹𝐹𝑡𝑡 we have
𝑋𝑋 = 𝑥𝑥1 … 𝑥𝑥𝑇𝑇 𝑈𝑈 = 𝐹𝐹1 … 𝐹𝐹𝑇𝑇

We can create a set of labels for 𝑥𝑥𝑡𝑡+1 such that 𝑦𝑦 = 𝑥𝑥𝑡𝑡+1
𝑌𝑌 = 𝑦𝑦1 = 𝑥𝑥2 … 𝑦𝑦𝑇𝑇 = 𝑥𝑥𝑇𝑇 𝑋𝑋′ = 𝑥𝑥1 … 𝑥𝑥𝑇𝑇−1

The goal is to learn the linear mapping between states, which in our 
case is nonlinear and in some cases no equations exist to model 
the system of interest

17
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Theory: Mathematical Overview

The Koopman operator, 𝒦𝒦, is an infinite dimensional operator that 
maps the trajectory of nonlinear finite dimensional states to an 
infinite dimensional linear state space forward in time.

𝑥𝑥𝑡𝑡+1 = 𝐹𝐹(𝑥𝑥𝑡𝑡 ,𝐹𝐹𝑡𝑡)
↓

𝒦𝒦𝑔𝑔 xt = g(𝐹𝐹 𝑥𝑥𝑡𝑡 ,𝐹𝐹𝑡𝑡 ) = g(𝑥𝑥𝑡𝑡+1)
A truncated approximation can be found through the choice of a 
lifting basis function

𝜓𝜓:ℝ𝑛𝑛 → ℝ∞≈𝑁𝑁 𝑁𝑁 ≫ 𝑟𝑟
Thus, we can represent the nonlinear system as a lifted linear system

𝜓𝜓 𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝜓𝜓 𝑥𝑥𝑡𝑡 + 𝐵𝐵𝐹𝐹𝑡𝑡

18
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Extremely Non-Linear - Lorenz System
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Linear Model Criteria and Loss Functions
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1. Use the the Xt+1 outputs from DNN – lifted representations – to 
compute A, B state space matrices.

𝐴𝐴,𝐵𝐵 = 𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑈𝑈𝑡𝑡

𝑇𝑇 𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑈𝑈𝑡𝑡

𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑈𝑈𝑡𝑡

𝑇𝑇
−1

2. Evaluate accuracy of prediction as loss function L1

𝐿𝐿1 = 𝑋𝑋𝑡𝑡+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − [𝐴𝐴𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 + 𝐵𝐵𝑈𝑈𝑡𝑡]

3. Evaluate lifted systems controllability as loss function L2
𝐿𝐿2 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐 𝐴𝐴,𝐵𝐵 )

4.    Loop training until L1 + L2 is minimized then compute C, D 

𝐶𝐶 = Xt 𝑋𝑋𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑇𝑇

𝐷𝐷 = 0
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• Utilizing spectrogram images to enrich the input dataset (pre-
processing)

• Learning the basis function that maps the states forward in time from 
the original nonlinear dimension to a lifted linear dimension 
(NN structure – Functioning)

• Generating a controllable linear state space representation of the 
original nonlinear system from raw state and control data. (initial - NN 
ouput)

• Minimizing the predictive error in the learned linear model for longer 
periods of time (Error measurement – Quality measurement)

• Demonstrating the ease of designing an optimal controller using linear 
system methods such as linear quadratic regulator methods.

21
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Raw Data Only Results: Simple Pendulum
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5th Dimension3rd Dimension
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