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Theory: Non-Linear Dynamic System Example (easy example)

Lunar lander:

* Lander coming down

* Disturbances during the way down
* Goal to land in a specified zone

What will be the path based on the initial
conditions provided?

[REF]: https://gym.openai.com/envs/#box2d
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Theory: Existing Applications (complex example)

Airborne Wind Energy drones

* Control of the wing shape is very
complex

* Quantifying all responses of the
system based on all the physics
involved is a very long endeavor.

* Usage of the Koopman
operator theory to simplify the
whole problem.
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Theory: Basic Concept

* At a high level, the Koopman operator maps the nonlinear
dynamics from state space to linear dynamics in the higher-
dimensional space of functions (lifted space)

Figure 1: Nonlinear evolution of state in the
state space i1s lifted to linear evolution of

functions in the lifted space "
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Why Use a Deep Neural Network?

Challenge with current standard approach to approximate the
Koopman Operator:
» Eigenfunctions of the Koopman operator can be arbitrarily complex
« Complex function will only be approximately represented in a finite basis
» Generally applied to single Dynamic systems
« Sensitive to noise in the data
« Can be unstable when interpolating between operating regime

Deep learning:
» Well-suited for representing arbitrarily complex functions
» Generalizable to scenarios with a variable number of objects

(Brunton et al. 2021)
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Theory: Our Contribution

Data pre-processing Usage of spectrogram images
» enrich the input dataset

BT M I | B 1o 1 (@] (T (VT =3 Learns the basis function instead of approximate them
» Map the states forward in time (from initial non-linear to lifted linear dimension)

Neural Network Output Controllable linear state space
» Simplified representation of the original nonlinear system

Error — Loss Measurement Find an adequate N-dimension lifted space
» Minimize the predictive error for longer periods of time

Linear system usage Design a LQR controller
» Usage of the Linear systems within its accurate prediction range
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Data Collection and Pre-Processing

Any Non-Linear Dynamic System Generate‘Spectrogram Images
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Simple Pendulum Example
Collect Raw Data from time t totime T o) : - : . . " "
State Data: Sl = Ht:T! SZ = Ht:T e (e

Control Data: U; = ;.7 S, N [N N I - —
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Sy, NN [ — — — — —
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CNN Autoencoder Latent Representation Labeling

Spectrogram Images Yn() ayn()

Reconstructed Images

After training, remove decoder and use
encoder to generate latent
representation of our state data
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Fully Connected Lifted State Labeling
Bn() ¢n()

oenes, [ O

LatentS_ -_ After training, remove decoder and use

Latent S, ‘ encoder to generate lifted state
training and test datasets
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Lifting DNN

Latent S, X ¥n ()
Latent S X Lifted Finally, the lifting basis function ¥ ()
> DNN N-Dimension between time steps is learned
LatentS, | X representation _
l/)N (Xt) - Xt"'llifted
Raw Data | sy, ..., Sk Xt"‘llifted
Model Loss Functions Linear State Space Model
Ly = Xt+1lifted N [Athifted + BU] Xt+1lifted - Athifted + BU,
L, = Njjse — rank(ctrb(A, B)) ‘ Yy = Cthifted + DU,

Lyotar = L1 + L,
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Image + Raw Data Results: Simple Pendulum

Spectrogram Plot For 0.001 second time steps: Raw Data State 0.001

Simple Pendulum State Trajectory
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Image + Raw Data Results: Simple Pendulum

Time Series State Trajectory Time Series State Trajectory
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Future Work

V Refine hyperparameters, Modify Architecture with VAE’s
f Evaluate methods on higher order non-linear systems

*—i; Deploy methods to physical systems

AuE 8930 Final Project Data-Driven Model-Free System Identification for Complex Nonlinear Systems



References

1. S. L. Brunton, M. Budi8i“c, B. BudiSibudiSi” BudiSi“c, E. Kaiser, and J. N. Kutz, “MODERN KOOPMAN THEORY FOR DYNAMICAL SYSTEMS *.”

2. N. Fonzi, S. L. Brunton, and U. Fasel, “royalsocietypublishing.org/journal/rspa Research Data-driven nonlinear aeroelastic models of morphing wings for
control,” doi: 10.1098/rspa.2020.0079.

3. B. Lusch, J. Nathan Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,” doi: 10.1038/s41467-018-07210-0.

AuE 8930 Final Project Data-Driven Model-Free System Identification for Complex Nonlinear Systems



Appendix

AuE 8930 Final Project Data-Driven Model-Free System Identification for Complex Nonlinear Systems



Theory: Mathematical Overview

Consider a discrete-time, non-linear dynamic system
Xe1 = F Qe ue)
Given a finite set of states x; and control inputs u; we have

X=1[%X1 - X7] U=[u .. ur]
We can create a set of labels for x;,; such that y = x;,
Y = [yl = X2 .. Y7 = XT] X' = [xl XT_]_]

The goal is to learn the linear mapping between states, which in our
case is nonlinear and in some cases ho equations exist to model
the system of interest
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Theory: Mathematical Overview

The Koopman operator, K, is an infinite dimensional operator that
maps the trajectory of nonlinear finite dimensional states to an
infinite dimensional linear state space forward in time.

Xey1 = F (g, up)
l
Kgxe) = g(F(xp,u)) = 8(Xe41)

A truncated approximation can be found through the choice of a
lifting basis function

P:R" > RN N > n

Thus, we can represent the nonlinear system as a lifted linear system
Y(xerq) = AYP(xe) + Buy
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Extremely Non-Linear - Lorenz System
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Linear Model Criteria and Loss Functions

1. Use the the X,,, outputs from DNN - lifted representations - to
compute A, B state space matrices.

X, X X
o= o3P |
t

1—1

2. Evaluate accuracy of prediction as Ioss function L,
Ly = Xt+1u'ft - [Athifted + BU]

3. Evaluate lifted systems controllability as loss function L,
L, = Nyjre — rank(ctrb(A, B))

4. Loop training until L; + L, is minimized then compute C, D

C =X, [thl.ft]T D=0
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* Utilizing spectrogram images to enrich the input dataset (pre-
processing)

e Learning the basis function that maps the states forward in time from
the original nonlinear dimension to a lifted linear dimension
(NN structure - Functioning)

* Generating a controllable linear state space representation of the
original nonlinear system from raw state and control data. (initial - NN
ouput)

 Minimizing the predictive error in the learned linear model for longer
periods of time (Error measurement - Quality measurement)

 Demonstrating the ease of designing an optimal controller using linear
system methods such as linear quadratic regulator methods.
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Raw Data Only Results: Simple Pendulum
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