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ABSTRACT

Koopman spectral theory has provided a new perspective in the field of dynamical systems in recent
years. Modern dynamical systems are increasingly non-linear and complex, and there is a need for a
framework to model these systems in a compact and comprehensive representation which can be used
for prediction and control. Koopman spectral theory represents nonlinear system dynamics in terms of
a infinite-dimensional linear operator which acts on the space of all possible measurement functions
of the system. Obtaining a linear representation of nonlinear dynamics allows engineers to leverage
optimal control methods which have been rigorously developed in linear systems theory. The central
problem in applying Koopman theory to a system of interest is that the choice of finite-dimensional
basis functions is typically done apriori, using expert knowledge of the systems dynamics. Our
approach learns these basis functions using a data-driven model-free approach where a deep neural
network learns the basis functions which map from the finite-dimensional nonlinear space to the
infinite-dimensional linear space. In order to identify a model of the system that is suitable for control,
the learned basis functions are subject to constraints which ensure the trajectory of the transient
dynamics of the system are accurately predicted such that the model is ideal for use in the design
of a controller. We demonstrate this approach on a simple pendulum example in which we obtain a
linear representation of the non-linear system and then predict the future state trajectories given some
initial conditions. We also explore how changing the input representation of the time series dynamic
system data can improve the quality of learned basis functions to provide a better approximation of
transient system dynamics which otherwise may not be captured. This alternative representation is
compared to the traditional raw time series data approach to determine which method results in lower
reconstruction and prediction error of the true non-linear dynamics of the system.

1 Introduction

Dynamical systems are systems for which a function defines the time dependency of a point in a finite dimensional
space. There are plenty of examples of such systems from airplanes flight paths to motion of a liquid in a container
and while some can be described by sets of non-linear equations representing the desired physics, this approach can
sometime be a complex challenge. Numerical modeling is a very appealing approach used in simulation which can help
represent very complex non-linear systems though if very often lead to very demanding computation for the central
processing units (CPUs) or simply put - they are CPU intensive simulations. This becomes a big challenge in controlled
dynamic systems where the controller feedback to the dynamic system is time sensitive and lagging information can
have critical consequences.
Over the past 2 decades or so, a new family of methods capable of efficiently approach the challenge posed by the
complexity of certain dynamic systems have emerged: Data-driven modeling method supporting the characterization of
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high-dimensional, non-linear dynamical systems. Though introduced in more details later, Dynamic mode decomposi-
tion (DMD) has been leading the pack in terms of promising techniques and more recently Deep learning has grabbed
most of the research attention. All methods rely to some extent on the Koopman operator theory [1] also described later.
In the case of dynamic systems, the data can be generalized as the knowledge of a variable in relation to the given
system state. One good example could be the positions of flying leaves in the air at a time t. This type of observable
can often be captured and stored in addition to any control inputs. Data-driven modeling methods. For DMD and neural
network modelling techniques, data is at the epicenter of the approach.
DMD and deep learning approaches have already been used in many different areas with a substantial level of success
and some of those examples are now presented.

1.1 Data-driven modeling method relevance through examples:

There is a broad spectrum of applications that can benefit from the Data-driven modeling methods though not all
dynamical systems are well suited. As mentioned already, one important aspect of the deep neural network approach
to learn the basis functions is that it is heavily dependent on access to existing data or ways to generate the required
data. A good example and relevant application are building environment control system where large amounts of sensor
information is captured and even virtual building simulation can be used to generate datasets. In this case, using
Koopman operators facilitates the comparison of complex data while also simplifying the system representation. In
Eisenhower et al. 2016 [2], the authors use the spectral decomposition approach to analyze building system data and
state that the approach accelerates the comparison between models and data as well as draw conclusions about the
sensor functions. In the end, using the spectral decomposition can help understand the changes in the different parts of
a building and help highlight poor control performance.

The same approach can also be applied to power grid systems to help evaluate the response to continuously changing
local demand. In this case, the challenge is in the size of the system and the amount of heterogeneous dynamic
sub-systems like power plants, transmission lines and other renewable energy systems. The objective in using the
Koopman operator technique here is to help identify key dynamic phenomena mechanisms as well as instabilities
and help understand cascading power outages. In Susuki et al. 2017 [3], the authors list the following advantages to
using Koopman Mode Decomposition (KMD): it creates a clear separation of spatio-temporal scales and enables direct
computation from data without describing the underlying system.

Another application of Koopman operators is in autonomous vehicles driving technologies. Vehicle motion planning
and control algorithms depend on the information of the vehicle dynamics. In this case, one big challenge is the creation
of a trajectory planning and control module that can handle the complex, unstructured and unpredictable road scenarios.
In Xiao et al. 2020 [4], the authors use Koopman operators but through a deep learning framework which is different
from the EDMD (Extended Dynamic Mode Decomposition), ELM-EDMD (extreme learning machine-based EDMD),
and MLP (multi-layer perception) methods. The authors list accuracy and efficiency as an advantage of their method
and can be used in realistic scenarios in a CarSim environment.

Another Koopman operator application is in shared Control of Human-Machine Systems to help users accomplish tasks
which otherwise would be challenging or even impossible for the user on his own. For this kind of system, the machine
and human are working as partners where the machine works as an autonomous entity. One of the main challenges
is that many different users may utilize the same mechanical device and requires a general solution enabling many
different pair-up. In Broad et al. 2019 [5], the authors are using approximation of Koopman operator to learn the system
dynamics through user interaction which apparently lead to the human-machine system spend a considerably superior
amount of time in desirable states.

With the increasing interest in energy saving, one relevant application of the Koopman operator is in signalized traffic
systems. With some work focusing on the usage of Intelligent Transport Systems (ITS) to help with the reduction of
fuel consumption, one direct way to do so is in the usage of a model-free approach exploiting existing data to determine
traffic signal control parameters to reduce queue lengths, traffic and potentially improving fuel consumption. In Ling
et al. 2019 [6], the authors propose an approach using the Koopman operator theory to study signalized traffic flow
networks. They demonstrate that the Koopman theory can be useful to detect queuing dynamics leading to instabilities
for a variety of applications.

Data-driven modeling of nonlinear dynamic system has also potential in aerospace as a candidate to model the nonlinear
dynamics fundamentals to the morphing airborne wind energy (AWE) aerostructures. In a nutshell, AWE would be
use to extract energy from high-altitude winds through attached drones. According to Fonzi et al. 2020 [7], replacing
the current rigid wings of drones with morphing structures would help produce more energy. The challenge lies in
the fact that morphing wings are tightly coupled with the system aerodynamics and on top of that, AWE operation
range is very broad. The complexity of that dynamic system makes it a very good candidate for the usage of DMD and
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Koopman operator approach. In their study, Fonzi et al. [7] are able to improve the prediction performance over the
existing modeling approaches.

1.2 Method Fundamental - The Koopman Operator

Bernard Koopman has pioneered the use of linear transformations on Hilbert space to analyze Hamiltonian systems by
introducing the now-called Koopman operator and study its spectrum [1]. The Koopman operator is linear, infinite-
dimensional and can be defined for any nonlinear dynamical system [8]. Though governing dynamics of a system can
be finite-dimensional, the Koopman operator is infinite-dimensional, does not rely on linearization and captures the full
information of the nonlinear dynamical system.
The following text is an extract of the section "Koopman Operator and Modal Decomposition" from Eisenhower et
al. [2] as the description was found to be good. In order to define the properties of the Koopman operator, lets take
a dynamical system evolution over a multi-dimensional finite space of the variables x ∈ M which is defined as the
state-space. The evolution in time of the variable x is described by the non-linear equation (1):

x (k + 1) = f (x (k)) , (1)

where f is a function mapping the variables x at a given instant k to new variables forward in time at instant k + 1.
An observation function M → R mapping the arbitrary variables on the manifold M to real numbers. The Koopman
operator K : R→ R is then defined as:

K g (x) = g (f (x)) . (2)

One can think of (2) as projecting the system dynamics into a different domain. The benefit of the Koopman operator is
that it simplifies the initial non-linear evolution function f into an infinite-dimensional linear operator. It is important to
mention that this process is done without discarding or losing any information of the initial dynamics.
Since K is a linear operator we can determine the eigenvalues and eigenfunctions associated with K,

Kψi (x) = λiψi (x) , (3)

for i = 1, 2, 3, ... where ψi (x) is the i− th eigenfunction corresponding to the i− th eigenvalue λi .

As a final note, multiple approaches exist to calculate or approximate the Koopman modes and this work will focus on
the usage of Neural Network inspired by the model developed in Han et al. 2020 [9]

1.3 Data-driven Models - Challenges:

One important requirement for a successful application of the Koopman operator theory is access to data. Indeed, most
applications of the Koopman operator theory are considered data-centric which means that the ideal cases are where the
data is already available. For some cases where the data might not be as easily accessible the data availability might
become a big challenge. Data acquisition can be an expensive task both in time and dollars and as most companies
are looking to reduce product development cycles and cost, the decision to invest in a data acquisition framework
can be a difficult one to make. In retrospect, while the application of Koopman operator theory can help simplify the
representation of highly complex dynamic systems, its implementation can be hindered by the data availability.
In line with data acquisition, the optimization of the sensor locations for data collection and decision-making is both a
crucial and challenging task for any real-world application. The data quality is indeed highly dependent on the sensor
location and the choice of what data to acquire can in the end impact the validity and accuracy of the model.

1.4 Convolutional/Deep Neural Network Hybrid Model:

The Koopman operator is used to represent non-linear dynamics in terms of an infinite-dimensional linear operator. The
usage of this simplified linear operator can then be used for prediction, estimation, and control of complex non-linear
systems. Dynamic mode decomposition (DMD) is considered the standard approach to approximate the Koopman
operator from data. The DMD algorithm was initially developed and applied to fluid dynamic problems [10]. Because
of its simple formulation and its direct application to measured data (experimental and simulation), it makes the DMD
approach very compelling. The DMD algorithm uses the observation data to approximate both the eigenvalues and
the Koopman modes without having to numerically implement a Laplace transform. DMD aims at finding the best
approximation of Koopman operator on some finite-dimensional subspace and computing eigenfunctions of the resulting
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finite-dimensional linear operator. One of the main challenges with this approach though is that it can be very sensitive
to noise in the data which can impact the quality of the Koopman operator approximation. Another challenge, or
perhaps a limitation, it the interpolation of the model to different operating regime. Going back to the airborne wind
energy application [7], the DMD approach becomes unstable when trying to interpolate between flying conditions. For
that reason, improvements are brought to the DMD models to enable better interpolation between the flying regimes.
Since the early adoption of the DMD model, there has been a lot of work to better understand as well as improve the
model which led to multiple base model extension [7, 11–14]:

• Optimized DMD

• Optimal Mode Decomposition

• Exact DMD

• Sparsity Promoting DMD

• Multi-Resolution DMD

• Extended DMD

• DMD with Control

• Total Least Squares DMD

• Dynamic Distribution Decomposition

• Naturally Structured DMD

With the recent advancement in the machine learning field as well as the increase in computation power, there has
been an increase in the usage of Deep Neural Network (DNN) for different applications including the learning of the
Koopman operator. Indeed, recent research have started to look into the usage of DNN to learn the Koopman operator
from the available data and the initial results. (Lusch et al., n.d.; Yeung et al., 2017) have investigated that alternate
approach applied to autonomous settings while (Han et al., 2020) work focuses on the controlled dynamical systems. In
this work, we focus on the later and try to investigate other potential Neural Network (NN) models to help improving
the solution. More specifically, we implement a hybrid NN model using both CNN and DNN to improve the raw data
usage and try to increase the accuracy of the solution as well as trying to limit the number of dimensions of the lifted
space. Additionally, we are hoping that the data conversion into image type data could help deploy this model in cases
where the data amount is low, as we believe it could enrich the input representation of the time series data.

2 Algorithm

2.1 Overview:

Our implementation consists of several sub-processes which makeup the overall pipeline for determining the final linear
lifted representation of the non-linear system. Provided time series data which contains measured state variables and
control inputs, we first perform data pre-processing. During pre-processing, a Mel Spectrogram image is created by
sampling the available time series dataset at a frequency less than the data was measured. In this case, we lose some
of the resolution of the data, so in cases where high frequency sampling is not available this approach may not be
as data efficient. Most modern engineering systems do have high sampling rates, so this is not a major concern but
rather something to consider when applying it to the system of interest. Once the Spectrogram images are created, a
convolutional autoencoder is trained to minimize the reconstruct error of the input image. At the output of the encoder
in the convolutional autoencoder network, there is a bottleneck layer which captures the latent features of the images.
These latent features are then parsed together with the raw time series data as inputs to a fully connected autoencoder
network. Similarly, the autoencoder trains to minimize the reconstruction error of the enriched input representation.
The bottleneck layer of this network is equal to the lifting dimension, and once the mean absolute error between the
input and output of the network is minimized we can remove the decoder. Now we have lifted labels for the time series
data generated by the fully connected encoder network which can be used to train our lifting DNN. Finally, the lifting
DNN maps latent image data and raw time series data from the current time step to the lifted state representation for
the next time step. The DNN lifting network is defined as our basis function which lifts our system from its original
dimension to a truncated infinite dimension. In the end, we want to find a linear state space model which minimizes
reconstruction error as well as prediction error compared to the real non-linear system. Another criteria for this system
is that it be controllable. Once these 2 criteria are satisfied the linear system is evaluated to see how well it can track the
state trajectories given some initial conditions and control inputs.
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2.2 Data pre-processing:

After obtaining raw time-series data from the system of interest, data pre-processing steps must be taken in order to
extract more useful information from each state in the system. The very first step is to create spectogram images from
the raw time series data for all the system time. This step is done using the specgram function provided by matplotlib
function library. Figure1 presents the raw time series data collection process and animated visualisation on the left and
the spectogram representations of the raw data.

Figure 1: Data Collection and Pre-Processing

Raw Input Data Representation:

Figure2 presents the entire state space and trajectories of all the data collected from the simple pendulum example.
Several initial conditions are set during the collection of data from the system and results are stored for short durations
of time. The control input to the system is randomly sampled from the action space. It is important to find a balance
between the number of initial conditions you begin from and the duration of sampling data from the system. Note that
for this approach to work well, a high sampling frequency of the state and control input must be used since it will be
down=sampled once the spectrogram images are constructed.

Figure 2: State space coverage and trajectories from collected raw data

v



Spectrogram Input Data Representation:

Once the spectogram images has been generated from the raw data, it is then gathered in a single image with the
purpose of being used as the input to the initial convolutional autoencoder network (CAN). The image shown contains
10 intermediary time steps, and the entire image is representative as the raw state value sampled at the beginning of this
interval. Every system requires that the spectrogram image be tuned in order to obtain a balance between the frequency
resolution and the time resolution. The objective is to minimize the time step while retaining enough useful frequency
information to distinguish between states.

Figure 3: Spectrogram image used as input for the convolutional autoencoder network

Convolutional Neural Network Layers:

The purpose of the CAN shown in figure 4 is to learn the latent space enabling the reconstruction of the spectogram
input. The encoder portion is composed of two convolution layers with LeakyReLU activation functions and including
"same" padding. The decoder is also using LeakyReLU activation function with the exception of the last activation
function which is Sigmoid. The main objective is to extract the latent representation of the state data as depicted in
figure 5.

Figure 4: Convolutional autoencoder network

Encoder Network:

After training the encoder section shown in figure 5, the CAN generates the latent labels from the input images which
are then combined with the raw state data.

Figure 5: Encoder network used to generate latent labels for each spectrogram image
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Fully Connected Deep Neural Network Layers:

This section of the code as for main purpose to learn the lifted N − th dimension linear representation able to predict
the non-linear dynamics of the system. This portion is actually the core of the model-free approach for the learning of
the Koopman operator. The encoder portion is composed of a single dense layer using the tanh activation function.
Figure 6 summarize the overall big steps of second NN section. Figure 6 highlights the main objective with is to extract
lifted basis functions.

Figure 6: Fully connected autoencoder network

Lifted Representation of States:

Figure 7: Fully connected encoder network (lifting basis function) mapping latent image data and raw time series data
to the lifted N-dimensional states at the same time step.

Once the lifting basis functions ψi (x) have been learn, it can be used to predict the state space for Xt+1lift
as shown in

figure8.

Figure 8: Deep Neural Network that maps the latent image representations and raw data from the current time step to
the lifted

Lifted Linear System Representation:

In our case, we are dealing with forced dynamical systems, which require a different set of equations to compute the
lifted linear representation of the system. The derivation of these formulas used in this section are beyond the scope of
this text, but are cited for reference [15].
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In order to obtain the state space representation of our lifted linear forced dynamic system, we compute A, B, and C
matrices where D is equal to zero.

[A,B] =

[
Xt+1lift

[
Xtlift

Ut

]T][[
Xtlift

Ut

] [
Xtlift

Ut

]T]−1
(4)

C = Xt

[
Xtlift

]T (5)

D = 0 (6)

In order to evaluate the accuracy of the lifted system, we compute the loss term L1 as defined in equation 7 which com-
pares the labeled next lifted state to the linear dynamic systems output which should result in zero if the approximation
is good.

L1 = Xt+1lift
− [AXtlifted +BUt] (7)

the controllability matrix Q is defined in equation 8, where the objective is to determine the number of linearly
independent columns in Q by using the rank function. By definition, a linear dynamical system is controllable if the
rank of the controllability matrix is equal to the lifted dimension in this case.

Q =
[
B AB A2B . . . AN−1B

]
(8)

Hence, we define our second loss function L2 to be equal to the difference between the rank of the controllability matrix
and the order of the system N .

L2 = Nlift − rank(ctrb (A,B)) (9)

So finally, the total loss L is computed in equation 10 as the sum of the lifted prediction error L1 and the controllability
criteria L2. In order for a identified linear system to be accepted, it must have a total loss less than 0.005. Which would
mean that the system is controllable as in equation 11 and accurate.

L = L1 + L2 (10)

rank(Q) = N (11)

3 Results

In this study, the usage of spectogram images from the time series dataset instead of raw time series data directly is
evaluated to identify if the quality of the learned basis functions can be increased. Since the input representation includes
images, the current neural network is composed of 2 sections: one CNN and one DNN. In the end, the objective remains
the same with is to help identify the desired basis functions and the A and B matrices. One advantage of the current
model is that it relies on very simple and well known CNN and DNN structures to help identify the latent space to then
use in the next neural network section as described in figure 4 to 7. With the main objectives of increasing the quality of
the learned basis functions that can accurately predict the transient dynamics for usage in the design of a controller we
identified three criteria to evaluate the success of our designed model. The first criterion is the complexity of the model
setup in terms of data gathering and preparation as well as the decoding of the model outputs for interpretation. A
second criterion considered is the size of the A and B matrices as the size indicates how many dimensions are required
by the model for what any user be considered an accurate representation which can be application dependent. For this
second criterion, smaller A and B matrices are targeted as low dimensions models means that the number of lifting
functions is lower and therefore would require a lower CPU cost. The last criterion in this study is the average state
trajectory prediction of both θ and θ̇ as well as the error on the initial θ̇ prediction. Since the ultimate and ideal objective
is to achieve good enough accuracy to use to generate a controller, it is important to get good prediction at the very start.
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3.1 Criterion 1: Complexity of the model setup

If we evaluate the model structure of different publications like Han et al. [9] and the example presented in Brunton et
al. [16], they use DNN structures only which do not require to learn the different latent spaces. With only one type of
model, the hyperparameters optimization study covers a smaller permutation spectrum as opposed to the current model
proposed. Indeed, though the final results may already show improvements in the prediction quality, the path to fully
master the structure is not a trivial one.
Leaving aside the neural network itself and focusing on the data pre-processing step, the simple fact that the proposed
model uses spectrogram images means that the data needs an extra tranformation. The time series data conversion
to image is a direct one but as the training progress through the network and reach the first DNN encoder, it then get
merged with the initial raw data which requires some care in the structure to avoid any data corruption. For the first
criteria, the proposed model bring extra complexity with the addition of the CNN part in comparison to the other models
presented in the literature [9] [16].

3.2 Criterion 2: Size of the A and B matrices

The way the code was implemented for this study gives the user the luxury of controlling the size of both A and B
matrices to enable a direct comparison between the proposed approach and the model using the raw data only. The
comparison here is done in terms of accuracy of the prediction and transient accuracy as well. As the goal is to head
toward a controller, the better model would be able to achieve a accuracy within the design or implementation accuracy
requirement for an extended period of time. The maximum lifted dimension used in this study was N = 12 and it
was also the lifting dimension giving the best prediction in both case. In figure 9, it is possible to see that though the
utilization of the latent images generates poor predictions for t < 3 it provides with good prediction after 3 seconds. The
opposite trend can be observed on figure 10 in the case where only the raw data is used. Indeed, prediction preceding
t = 3 are good while prediction after 3 seconds takes a less accurate path.

(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 9: Raw data + Latent image data compared to non-linear system lifting dimension = 12
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(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 10: Raw data only compared to non-linear system lifting dimension = 12

A close look at the prediction of θ for a lifting dimension = 3 when using the latent image and raw data highlight the
poor performance of the predictions using the basis functions identified by the proposed model as shown in figure 11.

(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 11: Raw data + Latent image data compared to non-linear system lifting dimension = 3

On the contrary, figure 12 shows that using the raw data only leads a model able to already predict accurately θ over for
t < 2 before the model becomes inaccurate.
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(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 12: Raw data only compared to non-linear system lifting dimension = 3

As the maximum learning dimension is increased to 5, the usage of latent image for the basis function identification
again leads to poor predictive performance on all fronts (see figure 13)

(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 13: Raw data + Latent image data compared to non-linear system lifting dimension = 5

On the contrary, the prediction of the basis functions learned using only raw data are increasing in accuracy for both θ
and θ̇ evolution through time (see figure 14).
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(a) Time series linear prediction for θ (b) Time series linear prediction for θ̇

(c) State Space Trajectory Reconstruction (d) Mean Absolute Error θ and θ̇

Figure 14: Raw data only compared to non-linear system lifting dimension = 5

For criterion 2, the current proposed model using latent image and raw data requires a higher lifting dimension for
accurate prediction compared to a the basis functions identified using only the raw data. Indeed, using only raw data
leads to accurate predictions.

3.3 Criterion 3: Average State Trajectory Prediction

For this last criteria, a comparison of the mean absolute error over average state trajectory prediction is presented in
Table 1. The results show an improvement for the raw data only model between 3rd and 12th lifting dimension usage.
The improvement trend only starts after the 5th dimension in the case where raw and latent image data is used for the
basis function identification.

Average State Trajectory Prediction Mean Absolute Error
Lifting Dimensions θ* θ̇* θ** θ̇**
3rd Dimension 0.515 1.95 0.30 1.18
5th Dimension 0.517 2.04 0.22 0.82
12th Dimension 0.456 1.84 0.14 0.54
Table 1: *Raw Data + Latent Image Data, **Raw Data Only

3.4 Potential Improvements

One potential downfall of the simple pendulum system is that it is almost too simple of a non-linear system for the
spectrogram image to bear any meaningful transient frequency information. To highlight this, we show our spectrogram
image from the pendulum in figure 15, its clear that there is little difference distinguishing the trajectory of the dynamics
of the measured state since it is repeatedly cycling through the same set of fixed values. A more complex example
of a nonlinear system could be the measurement of acoustics such as what is shown in figure 16. Visually it is clear
that over time the state is evolving in a unique and identifiable manner, making the content of the image more useful
for determining the trajectory of the audio or state. Ideally we would like to try out our approach on a more complex
nonlinear system, especially a real system with noise and uncertainty to truly measure the robustness of the approach in
performing accurate system identification.
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Figure 15: Periodicity of pendulum Spectrogram image for all training time

Figure 16: Spectrogram Image from acoustic data

4 Conclusion and Future Work

The investigation work around the utilization of spectogram images generated from a non-linear dynamic system state
space time series data showed that the approach can lead to accurate predictions though it does not seem to be achieved
as fast as when only using raw data. The current results provided by this work don’t show conclusive evidence as to the
benefit of the spectogram images in the quality increase in basis function identification at for low lifting dimensions.

Here, it worth mentioning that only a single Neural Network format was evaluated and it would be interesting to
evaluate different activation functions and layer structure in both the CAN and DNN sections of the model. Also, the
current model implementation uses a simple autoencoders and the usage of a VAE in the CNN portion of the code
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should be considered. While the spectogram images provide an enriched set of data, its accurate reconstruction through
the initial autoencoder is crucial and could become a critical improvement leading to the actual desired outcome: An
increased quality of the learned basis functions for more accurate prediction of transient dynamics.

A final aspect that wasn’t consider in the current investigation is the actual level of non-linearity of the example system.
The simple pendulum problem is considered as a simple non-linear problem and may be poorly suited to highlight
the benefits of using spectogram image representation of the non-linear state space data. Now that the framework is
available, it would be very relevant to test the proposed approach against another non-linear dynamic system like a
walking quadruped or biped structure.

In conclusion, the current investigation showed that the usage of a latent image data representation increase the
complexity of the Deep learning model though it doesn’t present any increase in prediction accuracy until a lifting
dimension of 12. At that dimension, the approach shows a good capture of the transient aspect of the dynamic while the
usage of only raw data still shows better prediction over short time.
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