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Frequency Analysis and System Response of a 1/18th Scale Race Car  

The objective of this project is to preform experiments, gather data and model the vehicles 
suspension for future development of a control algorithm that would enhance the vehicles 
autonomous driving capabilities. Currently the car only utilizes image processing techniques to 
make steering and throttle decisions. The motivation for gathering this data is to create a model 
that approximates the response of the suspension, so that it can be incorporated into the 
simulation which will learn over several thousand iterations around a track. The cars goal is to 
complete laps around a track as fast as possible and leveraging the accelerometer data to push the 
car harder around corners will aid in achieving this goal.  

Experiments 

There are three experiments that will be performed to approximate the total stiffness and 
dampening coefficients for a simple quarter car lumped parameter model. The first experiment 
measures the static displacement of the springs under a known mass. Similarly, the total stiffness of 
the vehicle is measured using the height difference of the chassis to the ground. The spring and 
total stiffness can be approximated, which will aid in calculating the tire stiffness from the total 
stiffness of the vehicle measured by the accelerometer. The second experiment requires that the 
vehicle drive over a bump as a step input. Additionally, a bounce test was performed while the car 
was at rest. The accelerometer data from this experiment will provide the approximate total 
stiffness and dampening coefficients of the vehicle using the method of logarithmic decrement [2]. 
Using MATLAB, the estimated stiffness and dampening coefficients can be evaluated and 
compared to the accelerometer data. Finally, in the third experiment the vehicle will be driven over 
a sinusoidal track. The recorded response will be compared to the MATLAB model developed in 
the second experiment but in this case under a sinusoidal input. After the conclusion of these 
three experiments, the stiffness and dampening coefficients will be validated in order to provide a 
model that is adequate for future controls development.  

The national instruments (NI) MyRIO is a compact data acquisition system (DAS) that has an 
onboard accelerometer which was used to record experimental acceleration data. Excel was used to 
integrate this data over time to get velocity and displacement data. MATLAB was used to compare 
response of the approximated transfer function to the measured displacements. The test track was 
built on a budget using a single 2x10x8 foot board and a 1” wooden rod. 

Data Acquisition 

Using LabVIEW to program the MyRIO DAS the block diagram in figure 1 was deployed onto the 
MyRIO. To record the acceleration data in the z-axis, a for loop is initialized by pressing the button 



on the MyRIO and pushed again to finish the recording. Data is saved onto a flash drive in a .CSV 
file, which can then be extracted and opened into excel.  

 

Figure 1. Block diagram z-axis acceleration data acquisition using NI MyRIO  

The MyRIO was strapped on top of the 
vehicles center of gravity as seen in figure 2. 
Unfortunately, the power and 
communications cables had to be connected 
during testing, which made it difficult to test 
on longer tracks.  

 

 

 

 

 

 

      
         Figure 2. NI MyRIO with onboard accelerometer. 

 



Test Tracks 

The second experiment requires that the vehicle drive over a bump as a step input. The track for 
this experiment will only have one bump, with the speed of the vehicle being measured using a 
camera and distance markings on the track. In the third experiment the car will be driven over 3 
evenly spaced 1 cm high bumps. The spacing of the bumps is 9 inches. The speed of the vehicle 
will again be recorded using a camera, but not held constant as it is not possible to set a specific 
speed on the vehicle. 

 

Figure 3. Generic track configuration. 

 

Figure 4. Sinusoidal test track for experiment 3.  

 

 



Experimental Results 

Static Displacement Test 

In order to determine the stiffness of the springs on the car, I measured the static height of all the 
springs to determine an average unloaded length of the spring, ox . Then I placed 3 different 

weights on the center of gravity, and measured the displacement, dx  , of the springs. I then plotted 

the mass as a function of the difference between the unloaded length and the displaced length as 
can be seen in figure 5. The vehicle has a measured mass of 1,656 grams. 

 

Figure 5. Spring stiffness curve 

To verify the total stiffness of the vehicle, I measured the distance from the bottom of the chassis 
to the ground, oh , and the displaced height under a known mass, dh . I also placed 3 different 

weights on the center of gravity and measured using a depth gage on a caliper. This test will help 
validate results extrapolated from the Step Input Test. The mass is plotted as a function of the 
difference between the unloaded chassis and displaced chassis heights as can be seen in figure 6.  

 

Figure 6. Total stiffness curve 
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Step Input Test 

I preformed two different types of step input tests to try and approximate the total mass and 
stiffness coefficients of the vehicle. In the first step input test, I drove the vehicle over a single 1 cm 
high bump at a speed of 0.47 m/s. Using accelerometer data, I calculated the z-axis displacement 
over time, as can be seen in figure 7.  

 

Figure 7. Step input response over a 1 cm bump at 0.47 m/s. 

These results are difficult to extrapolate using the method of logarithmic decrement, because the 
peaks grow and then shrink over time. The vehicles front wheels go over the bump causing the 
front end to lift up and then at about 1.5 seconds the rear of the car hits the bump forcing the 
front end down. This sort of response is not quite a step input, rather it is a series of step inputs 
that forces the vehicle to swing backward and then quickly forward. This can be seen in video 1, 
which is attached as supplemental material with this report [3].  

 

Figure 8. Step input response bouncing the vehicle 
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In the second step input test, the vehicle was at rest and I quickly bounced the vehicle using my 
finger. I calculated the displacement of the vehicle as the frequency of oscillations died out. Figure 
8 shows this, and it is possible to extrapolate information about the total stiffness and dampening 
of the system using the method of logarithmic decrement. I included video 2 to show this test 
being carried out [3]. 

Sinusoidal Input Test 

I performed several tests over 3, 1 cm high bumps that were spaced evenly 9 inches apart from 
each other. I had trouble getting a good data from the accelerometer, as many of my measurements 
had high DC offset in the results [1]. I was able to get two measurements that had negligible bias in 
the displacement results, and they are shown in figures 9 and 10 below. Video 3 shows the results 
collected in figure 9 [3].  

 

Figure 9. Sinusoidal input with the car traveling at 0.66 m/s. 

 

Figure 10. Sinusoidal input with the car traveling at 0.48 m/s.  
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Analytical Methods 

Spring and Total Stiffness Approximation 

The spring and total stiffness curves are approximated as linear in figure 5 and 6. The stiffness 
coefficient, k, is simply the slope of each of these curves. This information will be helpful in 
validating stiffness values derived from the step input test.  

Tire Stiffness Approximation 

In order to determine the tire stiffness, the total stiffness and spring stiffness must be known. After 
measuring these values in the first experiment, it is possible to calculate the stiffness of the tires. 
Assuming the tire and springs are working as springs in series, the following equation can be used 
to determine the tire stiffness. 

tire spring
Total

tire spring

k k
k

k k
=

+   

Step Input Parameter Approximation 

Using the method of logarithmic decrement, it is possible to determine the total stiffness and 
dampening coefficients for the system [2]. Figure 8 will be used to determine these coefficients. 
The logarithmic decrement, δ ,is defined to be the natural logarithm of the ratio of two successive 
amplitudes. Such that,  

( )
( )
x t

x t P
δ =

+
            (1) 

Where P is the period between the two successive peaks. The frequency of oscillation between the 
two peaks is the damped frequency dω . Thus, the period can be calculated as  

2

d

P π
ω

=             (2) 

Noting that for a second order system, the damped frequency is also defined as:  

2(1 )d nω ω ξ= −            (3) 

Substituting the free response of the underdamped system into equation 1, we eventually obtain, 

nPδ ξω=             (4) 

Combining equations 2, 3 and 4 we can obtain, 

2

2
1
πξδ
ξ
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−

            (5) 

Which can be rewritten in terms of the dampening ratio, ξ   
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Once this is determined, the damping frequency can be solved for, where 1 ot t−  is the period 

between the peaks starred in figure 8. 
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            (7) 

The natural frequency can be solved for from equation 3, now that both the damping frequency 
and dampening ratio are known. The system stiffness can be approximated using natural frequency 
and the measure mass of the vehicle. 

2
nk mω=             (8) 

Finally, the system dampening coefficient, c, can be approximated by solving the equation for 
dampening ratio,  

2c mkξ=             (9) 

Lumped Parameter Model 

As previously mentioned, the analysis of the vehicle dynamics is being modeled based on the 1 
degree of freedom, quarter car model. The equations of motion for this system are  

( ) ( )my k y h c y h= − − − −     

my cy ky ch kh+ + = +    

Laplace transforming the above equation, the transfer function for this system is  

2
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+
= =

+ +
          (10) 

This model assumes that a quarter of the vehicles mass is on one wheel. However, Since the 
measured accelerations and displacements are for the entire vehicle, the mass of the block will be 
the mass of the entire car. 

 

Figure 11. 1 degree of freedom quarter car model. 



Sinusoidal Input Analysis 

This test was performed in order to evaluate the parameters derived from the step input test. Using 
the transfer function for the one degree of freedom quarter car model and MATLAB’s transfer 
function and lsim functions, a simulated response will be generated. This simulated response will 
be used to validate the robustness and similarity of the approximated stiffness and dampening 
coefficients. In order to perform this analysis, the height of the track must be developed as a input 
function for MATLAB. The frequency is dependent on the speed measured, as well as the distance 
of the bumps.   

2 V
d
πω =             (13) 

Where V is velocity, and d is the spacing of the bumps. Since the test track is not truly a sinusoidal 
function, a half-rectified sine wave function was used in MATLAB for lsim. 

Analytical Results  

Using the results from figure 5 and 6, the spring and total stiffness coefficients can be 
approximated.  

• Spring Stiffness, springk  : 177.57 g/mm (1,741 N/m)  

• Total Stiffness, Totalk  : 125.5 g/mm (1,231 N/m) 

Using these results the tire stiffness can be approximated 

• Tire Stiffness, Tirek  : 427.9 g/mm (4197 N/m) 

Analysis of the step input from figure 8 yielded the following results 

Logarithmic Decrement, δ  0.642885  
   

Damping Ratio, ξ  0.101787  
   

Damping Frequency, dω   26.17994 Hz 
   

Natural Frequency, nω   26.31662 Hz 
   

Total Stiffness Coefficient 1291.702 N/m 
   

Total Dampening Coefficient 9.992045 N*s/m 
Table 1. Stiffness and dampening coefficient approximation from the step input bounce test. 

The total stiffness measured during the static tests is very similar to the total stiffness derived from 
the logarithmic decrement method. This agreement between the two methods is a good reference 
to check how realistic these results are. Assuming the spring stiffness is held constant from the 
static tests, the new tire stiffness coefficient would be 509 g/mm (4997 N/m). 

 



Comparing the Approximated Model to Measured Results 

Using the MATLAB code included in Appendix A, I created a half-rectified sin wave, with an 
amplitude of 10 mm. The frequency of the input function was determined using equation 13. 
Figure 9 from the sinusoidal experiment was used for comparison, thus the velocity of the 
simulated input frequency was set to 0.66 m/s.  

 

Figure 12. Simulated response, with the amplitude of displacement [m] as a function of time 

 

Figure 13. Experimental sinusoidal input with the car traveling at 0.66 m/s. 

Although these two curves peak at different curves, it is hard to argue that they are not similar. 
There is noise in the displacement measurement, however when a moving average is approximated 
over this noise it fits almost exactly to the simulated response of the system. 
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Conclusion 

This project was a valuable learning experience, introducing me to new methods of measurement, 
analysis and engineering. Gathering the data was challenging, as I have had limited experience 
coding in LabVIEW, but I was able to learn a lot about the process through this project. Dr. 
Beasley and Dr. Figliola’s mechanical measurements book [1] was very helpful in understanding 
what DC offset is and why is occurs in signal processing. Being able to integrate the research done 
in my creative inquiry with the course material was exciting and a great way to get a better grasp of 
the underlying concepts covered in modeling dynamic systems. I taught myself some of the 
methods needed to extract the stiffness and dampening coefficients from the accelerometer data 
[2]. As expected, not everything went smoothly during the process of creating an empirical model 
that closely resembles observations made in reality. Despite this, I think that the approximation 
methods used here provided realistic and useful results. 
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Appendix A 

MATLAB Code for Simulated Response 

V=0.66 %m/s 
d=.2286 %m 
w=2*pi*(V)/d 
 
% Half-Wave Rectified Sine Function 
f = @(t) .01.*sin(w.*t).*(.01.*sin(w.*t)>=0) + 0*(.01.*sin(w.*t)<0);             
t = linspace(0, 1,1000); 
  
m = 1.865 %kg mass of car and MyRIO 
c = 10 %N*s/m 
k = 1291 %N/m 
  
Gs = tf([c k],[m c k]) 
in = f(t) 
lsim(Gs,in,t) 
 


