ME 8930 Final Project Presentation

Policy Gradient Methods

&
Applications to Learned Locomotion

\ . y\ i fuc
Alexander Krolicki Sarang Sutavani
akrolic@clemson.edu ssutava@clemson.edu

Overview

Methods
Our Problem
Results
Comparison
Summary
Future Work

o 0k bR

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Policy Gradient Methods

@ Methods that can learn a parameterized policy without the help of a value or
action-value function.

@ The methods usually seek to maximize a performance index:

JO) =V, = E Z'}ftm] (1)
Tr~Tg —0
e Update rule follows gradient accent:
Ois1 = 0: + aV.J(6;))

o All policy gradient methods follow this general scheme.

e Value (or Q) function can still be used for reducing variance (for faster
convergence).

@ Techniques that try to learn the value function along side the policy are termed
actor-critic methods. (Actor - policy; Critic - value function)

ME8930 Final Project Policy Gradient Methods: Learned Locomotion

Policy Gradient Methods: Advantages

e Value functions are learned to eventually determine a policy, so why use a broker
when we can learn the policy directly!

@ In certain cases learning a policy can be much more straight forward than
learning a value function.

@ More effective in dealing with continuous state and/or action spaces.

o Knowledge of the problem can be utilized to guide the policy search.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Limitations of Plain Policy Gradient

@ Poor sample efficiency: data is discarded after each update.

e due to on-policy learning/estimation
e stable but extremely slow to converge

e Difficulty in deciding and updating proper step size.
e even small changes in parameter could result in large changes in policy

e Importance Sampling:

P(r |6)
VoJ(6) = ng’ Z P((Tt 0 V' Vologme (ar | s¢) Ag (st, at) (3)

P(r|6) _ H mo (aer | siv)
P (7|6 mor (ar | svr)

(Importance sampling ratio) (4)

t’'=0

e data can be used more efficiently (off-policy learning)
e unstable due to exploding or vanishing gradients (importance sampling ratio)

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Comparing 2 Policies

e For any two policies 7 and 7'

>0 5
J() = Im) = B, {30447 (s >
t=0

_ 1 7' (a | s) s o (6)
1—73;‘%? LT(MS)A(’)}

L1 m(a]s) gm0 (7)
B T A

B T | <L) O

discounted future state distribution, d™(s) = (1 —~) > 2 v P(si = s |)

e Relative performance in terms of ‘Loss function’ L, (7") and KL divergence:

7 (x) = (I + Le (+))| < €,/ E_Dxcr, (@[[m) 5] ®)

where, Dicr, (7'||7) [s] = > ,c a7 (a] s)log = m'(als) (10)

m(als)

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Monotonic Improvement in Policy

e Optimize over new function:

max L, (ﬂ") — (' max [DKL (W'Hﬂ'k) [SH (11)

g4 s~d™k
. . . ’ . . .
maximizing 7' is an improved policy.
e Surrogate objective used:
/
arg max L, (ﬂ')
.-n-.'

st. E [Dgp (7'||me) [s]] <6 (12)

s~d™k

e Some well known policy gradient methods approximating this objective:

e Natural Policy Gradient
e Trust Region Policy Optimization
e Proximal Policy Optimization

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Trust Region Policy Optimization

@ Linear approximation of objective:

Lo, (8) ~ Loy (6) + ¢ (8 —61) 9= VoL, (6) (13)

01

@ Quadratic approximation of constraint:

Dicr (0]|6:) ~ % 0 —0.)" H(O—0,) H=V3Dxr (00 9 (14)
K
o Optimization problem:
Arg max g’ (0 —6y) (15)
s.t. % 0 —0.)" H(O—6,) <6 (16)
e Solution to approximated problem:
Or+1 = Op + nglgﬂlg (17)

o H™'g: estimated using Conjugate Gradient (CG)

o Line search in direction of the estimated gradient: to make sure Ly, () > 0 and
Drr (0]|6r) < 0 (6 defines the trust region). Adjust ¢ to meet the conditions.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Proximal Policy Optimization

e PPO with adaptive KL penalty: solves unconstrained optimization problem

arg max Lo, (0) — BxDrcr, (0]|0k) (18)

[k 1s adaptive and optimization is performed over a batch.

d=Dgp(.),if d <dtarg/1.5,8 < B/2, if d > diarg x 1.5, 8 < 3 x 2.
e PPO with Clipped Objective:

o (an | 51) | CL.lfT'<a
re(6) = - cip(rab) =< bifr>b (19)
Tola (at | s¢) r otherwise
T A .
CLIP(Q) _TET Z {min (rt(H)A:k,clip (re(0),1 —e, 1 +€) A:kﬂ (20)
t=0

CLIP(H)

arg max Lg, (objective without critic)

LEHIPRVIRS (9) = Bo [LTM7(8) = en LY T (6) + caS [(1) 21)

CLIP+VF+S (8)

argmax L L, (objective with critic)

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Application to Learned Locomotion

* Deep Reinforcement Learning is actively researched and applied
to physical robots with impressive results. [1]

* Most methods rely on domain specific knowledge, model based
approaches, or even imitation learning. [2]

* Our study aims to evaluate how a quadruped agent can learn a
gait motion completely from scratch.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Environment: Spaces, Rewards, Episodes

- State Space S € R?8

* Motor Angles S € q = {411,912, 921, 922, 931, 932 941, G2}

* Motor Velocities S € q = {§11,912, 921,922,931, 932, Ga1, a2}
« Motor Torques S € T = {Ty1, T12, T21, T22, T31, T32, Ta1, Taz}

- > 5 —

- Base Pose S €ep ={x,y,z,w}
* Action Space S € R8

* Motor Angles A € qgesirea = {911, 912> 421, 922, 431, 932, 941, Qa2 }
 Reward Function

* Penalizes not moving forward and actuator effort

*R=(p,— pn—l)T) — wAt|T, - q|
* Terminal State

e Center of mass is <0.13 meters to the ground
* Simulation reaches 1000 steps forward in time

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Hyperparameter Tuning

Slice Plot

Hyperparameter - . " Load Best
Distributions - T e W ... Hyperparameters

oo) Lose

. | I Agent .
clip » Optuna N A R —| clip

= Model
Runs Batch Create Agent
14 Optimization Jobs Y
PPO2 Tuning TRPO Tuning

100 permutations

100 permutations

200,000 Training Episodes/permutation
~24 Hours to complete

100,000 Training Episodes/permutation
~24 Hours to complete

MES8930 Final Project

Policy Gradient Methods: Learned Locomotion

Visualizing Final Learned Policies

PPO2 Agent After 4 Million Episodes TRPO Agent After 4 Million Episodes
Avg. Reward = 0.5 +0.05 Avg. Reward =2.5 +1.5
Training Time = 5 Hours Training Time = 6 Hours

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Training Scheme

Episodic Reward

* PPO and TRPO were trained 2
separately with their own optimal 17
parameters. ;

 Benchmarks of the learned 13
models were saved every 200k B
episodes

* Since TRPO performed well in
exploration, the policy and value
function networks were extracted
and placed into a PPO agent to ;
continue training.

——TRPO
—— TRPO+PPO

Average Reward / Episode

—PPO2

* The hypothesis was that the
reward sighal noise would reduce
since PPO showed little variance) PPO Pick-up Point
during learning. 5

0 1 2 3 4 5 6 g 8
Millions

Training Episodes

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Best of both worlds?

* Using TRPO to find a high return policy and value function
network, we then transfer this network to a PPO agent and run
optimization starting 4 Million episodes.

* The PPO agents best hyperparameters were then trained for an
additional 4 Million episodes to attempt to improve the quality of
the policy and value function networks.

V(6 b)
TRPO Fitted \b /@ New PPO Fitted
Hyperparameters 1pp, (0;D) Hyperparameters
~24 Hours

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Visualizing Final Learned Policies (Best of the Rest)

—

TRPO to PPO2 Agent After ~7 Million Episodes TRPO Agent After 4 Million Episodes
Avg. Reward =3 + 1.5 Avg. Reward =2.5 +1.5
Training Time = 11 Hours Training Time = 6 Hours

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Comparison

* Qualitative Assessment

* PPO: Took too literally the reward function and converged to a local
minimum solution.

* TRPO: Achieved a fast novel gait motion but with high speed comes
greater risk of losing or gaining a significant amount of rewards.

e Value Function Approximation

* Clearly TRPO achieves a higher return, but suffers from high variance in
the policy update without clipping.

* PPO starting with a high return policy still was not able to stabilize the
policy and value function networks.

* Increasing the # of layers and hidden units may be necessary for this
problem

* Optimization Results

* Running both agents for a longer number of episodes during optimization
would benefit the in the long-term stability of the learned policy and value
function networks.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Summary

* A total time of 72 Hours tuning hyperparameters and 24 Hours raining
* TRPO outperformed PPO in terms of exploration
 PPO was not able to stabilize the optimal policy generated by TRPO

* Hyperparameter tuning is extremely important when experimenting
with different RL environments

* Without a reference gait trajectory, the learned policy depends on a
well defined reward function

 Variations to the quadrupeds mass, leg lengths, joint friction, sensor
noise, ect... May improve the robustness of the learned policy

* Developed in a Google Colab Notebook for ease of access ‘ J

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

https://colab.research.google.com/drive/14gOUZhOGHNf3ZvtpfUbgGGii3tcnbgbv?usp=sharing

Future Work

\/ Investigate Multi-agent reinforcement learning methods
f Provide a reference trajectory for stable policy

*—i; Deploy methods onto physical systems

ME8930 Final Project Policy Gradient Methods: Learned Locomotion

References

Schulman, John, et al. “Proximal Policy Optimization Algorithms.” ArXiv.org, 28 Aug. 2017, arxiv.org/abs/1707.06347 .
Schulman, John, et al. “Trust Region Policy Optimization.” ArXiv.org, 20 Apr. 2017, arxiv.org/abs/1502.05477 .
Tan, Jie, et al. “Sim-to-Real: Learning Agile Locomotion For Quadruped Robots.” ArXiv.org, 16 May 2018, arxiv.org/abs/1804.10332 .

Erwin Coumans and Yunfei Bai PyBullet, a Python module for physics simulation for games, robotics and machine learning, 2016—2021, http://pybullet.org

Tsounis, Vassilios, et al. “DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning.” ArXiv.org, 31 Jan. 2020,
arxiv.org/abs/1909.08399.

Kakade, S., et al. (2002, July). "Approximately optimal approximate reinforcement learning." In ICML (Vol. 2, pp. 267-274).
Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems (pp. 1531-1538).

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

https://stable-baselines.readthedocs.io/en/master/modules/trpo.html

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

http://pybullet.org/
https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
https://stable-baselines.readthedocs.io/en/master/modules/trpo.html

Appendix

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Policy Gradient Theorem

o Policy Gradient Theorem:
VI0) x 3 u(9) Y ax(s.0)Va(a | 5.6)
e New update rule:
01 =0:+ad q(Si.a,w)Vr(a|S:.0)

Vﬂ' (At | Stygt)
T (At | Stggt)

Oir1 =0+ a (G —b(Sh)) (REINFORCE with baseline)

e For advantage estimate:

A‘*‘Te (3: a’) — Qﬂa (Sa a’) - Vﬂ'e (3)

Vol (0)= E |Y ~'Vilogm (ar | st) Ang (si,ar)
T~Tg —0

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

Environment: Overcoming Implementation Challenges

* Physics/Kinematics
* Bullet Physics engine handles the model environment interaction.
* All components have mass and inertia matrices.
 Joints have friction and dampening.

* Actuator Models
* Accurate models of the motors operating characteristics are used to
generate actions
* Simulated Latency

* Observations are back logged and sent with a delay to simulate the
latency a real control system would exhibit (0.001 - 0.002s)

e Gaussian noise is injected into state signals

* Parallelizable Agents

* |ts possible to spin up several agents in headless mode, which can help
expedite training if the algorithm exploits multithreading or tensor cores.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

PPO Tuning Results

Hyperparameters

Number of State Steps until Terminal State ng.,¢ 1276
Discount Factor y 0.909
Learning Rate [, ;. 0.00317
Entropy Coefficient e 3.59e-8
Clipping parameter controlling policy update rate € 0.345
Clipping parameter controlling value function update rate 0

of epochs when optimizing the surrogate objective function K 2
Generalized Advantage Estimator factor 4 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -
Value Function Network (DNN) 2 layers with 64 hidden units each -

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

TRPO Tuning Results

Hyperparameters

Time steps per batch t, i 293
Discount Factor y 0.974
Kullback-Leibler loss threshold 0.0503
Weight for the entropy loss 5.03e-3
The compute gradient dampening factor 0.0135
Value Function Step Size 3.2e-3
Value Function # of iterations for learning 3
Generalized Advantage Estimator factor 4 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -
Value Function Network (DNN) 2 layers with 64 hidden units each -

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

PPO+TRPO Tuning Results

Hyperparameters Old Values

Number of State Steps until Terminal State ng.,,

Discount Factor y
Learning Rate [, ;.

Entropy Coefficient e

Clipping parameter controlling policy update rate €

Clipping parameter controlling value function update rate

of epochs when optimizing the surrogate objective function K

Generalized Advantage Estimator factor A
Policy Network (DNN) 2 layers with 64 hidden units each

Value Function Network (DNN) 2 layers with 64 hidden units each

MES8930 Final Project

Policy Gradient Methods: Learned Locomotion

1277

0.913
1.83e-5
5e-4
0.379

1276

0.909
0.00317
3.59e-8

0.345

PPO Results

2e-7

1.5e-7

Advantage Estimate

_5e-8

le-7

_1.5e-7

20k 40k 60k 80k 100k 120k 140k

Discounted Returns

.0.02

_0.04

.0.06

MES8930 Final Project

20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Policy Gradient Methods: Learned Locomotion

* On-Policy method which aims to learn iteratively through a
surrogate objective function, which learns new policies for a
specified number of epochs.

e After these epochs have passed, the policy update is performed
carefully by choice of a clipping hyperparameter which ensures
policy update steps are not too large.

MES8930 Final Project Policy Gradient Methods: Learned Locomotion

	ME 8930 Final Project Presentation
	Overview
	Policy Gradient Methods
	Policy Gradient Methods: Advantages
	Limitations of Plain Policy Gradient
	Comparing 2 Policies
	Monotonic Improvement in Policy
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Application to Learned Locomotion
	Environment: Spaces, Rewards, Episodes
	Hyperparameter Tuning
	Visualizing Final Learned Policies
	Training Scheme
	Best of both worlds?
	Visualizing Final Learned Policies (Best of the Rest)
	Comparison
	Summary
	Future Work
	References
	Appendix
	Policy Gradient Theorem
	Environment: Overcoming Implementation Challenges
	PPO Tuning Results
	TRPO Tuning Results
	PPO+TRPO Tuning Results
	PPO Results
	Slide Number 28

