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Policy Gradient Methods
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Policy Gradient Methods: Advantages
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Limitations of Plain Policy Gradient
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Comparing 2 Policies
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Monotonic Improvement in Policy
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Trust Region Policy Optimization
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Proximal Policy Optimization
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Application to Learned Locomotion
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• Deep Reinforcement Learning is actively researched and applied 
to physical robots with impressive results. [1]

• Most methods rely on domain specific knowledge, model based
approaches, or even imitation learning. [2]

• Our study aims to evaluate how a quadruped agent can learn a 
gait motion completely from scratch.
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Environment: Spaces, Rewards, Episodes
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• State Space 𝑆𝑆 ∈ ℝ28

• Motor Angles S ∈ 𝒒𝒒 = {𝑞𝑞11, 𝑞𝑞12, 𝑞𝑞21, 𝑞𝑞22, 𝑞𝑞31, 𝑞𝑞32, 𝑞𝑞41, 𝑞𝑞42}
• Motor Velocities 𝑆𝑆 ∈ �̇�𝒒 = {�̇�𝑞11, �̇�𝑞12, �̇�𝑞21, �̇�𝑞22, �̇�𝑞31, �̇�𝑞32, �̇�𝑞41, �̇�𝑞42}
• Motor Torques 𝑆𝑆 ∈ 𝑻𝑻 = {𝑇𝑇11,𝑇𝑇12,𝑇𝑇21,𝑇𝑇22,𝑇𝑇31,𝑇𝑇32,𝑇𝑇41,𝑇𝑇42}
• Base Pose 𝑆𝑆 ∈ 𝒑𝒑 = {𝒙𝒙,𝒚𝒚, 𝒛𝒛,𝒘𝒘}

• Action Space 𝑆𝑆 ∈ ℝ8

• Motor Angles 𝐴𝐴 ∈ 𝒒𝒒𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = {𝑞𝑞11, 𝑞𝑞12, 𝑞𝑞21, 𝑞𝑞22, 𝑞𝑞31, 𝑞𝑞32, 𝑞𝑞41, 𝑞𝑞42}
• Reward Function

• Penalizes not moving forward and actuator effort 
• 𝑅𝑅 = 𝒑𝒑𝑛𝑛 − 𝒑𝒑𝑛𝑛−1 𝒙𝒙 − 𝑤𝑤∆𝑡𝑡|𝑻𝑻𝑛𝑛 � �̇�𝒒|

• Terminal State
• Center of mass is <0.13 meters to the ground
• Simulation reaches 1000 steps forward in time
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Hyperparameter Tuning
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𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐

…

Optuna Agent
Model

Hyperparameter
Distributions

Load Best 
Hyperparameters

𝛾𝛾
Runs Batch

Optimization Jobs

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐

…

𝛾𝛾
Create Agent

PPO2 Tuning
100 permutations

100,000 Training Episodes/permutation
~24 Hours to complete

TRPO Tuning
100 permutations

200,000 Training Episodes/permutation
~24 Hours to complete
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Visualizing Final Learned Policies
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PPO2 Agent After 4 Million Episodes
Avg. Reward = 0.5 ±0.05
Training Time = 5 Hours

TRPO Agent After 4 Million Episodes
Avg. Reward = 2.5 ±1.5
Training Time = 6 Hours
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Training Scheme

• PPO and TRPO were trained
separately with their own optimal
parameters.

• Benchmarks of the learned 
models were saved every 200k 
episodes

• Since TRPO performed well in
exploration, the policy and value
function networks were extracted
and placed into a PPO agent to
continue training.

• The hypothesis was that the
reward signal noise would reduce 
since PPO showed little variance 
during learning. 
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PPO Pick-up Point
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Best of both worlds?

• Using TRPO to find a high return policy and value function 
network, we then transfer this network to a PPO agent and run 
optimization starting 4 Million episodes.

• The PPO agents best hyperparameters were then trained for an 
additional 4 Million episodes to attempt to improve the quality of
the policy and value function networks.
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TRPO PPO

𝑉𝑉𝜋𝜋(𝜃𝜃; 𝑏𝑏)

𝜋𝜋(𝜃𝜃; 𝑏𝑏)
TRPO Fitted 

Hyperparameters
New PPO Fitted 

Hyperparameters
~24 Hours
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Visualizing Final Learned Policies (Best of the Rest)
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TRPO to PPO2 Agent After ~7 Million Episodes
Avg. Reward = 3 ± 1.5

Training Time = 11 Hours

TRPO Agent After 4 Million Episodes
Avg. Reward = 2.5 ±1.5
Training Time = 6 Hours
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Comparison
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• Qualitative Assessment
• PPO: Took too literally the reward function and converged to a local 

minimum solution.
• TRPO: Achieved a fast novel gait motion but with high speed comes 

greater risk of losing or gaining a significant amount of rewards. 
• Value Function Approximation

• Clearly TRPO achieves a higher return, but suffers from high variance in 
the policy update without clipping.

• PPO starting with a high return policy still was not able to stabilize the 
policy and value function networks. 

• Increasing the # of layers and hidden units may be necessary for this 
problem

• Optimization Results
• Running both agents for a longer number of episodes during optimization

would benefit the in the long-term stability of the learned policy and value 
function networks. 
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Summary
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• A total time of 72 Hours tuning hyperparameters and 24 Hours raining
• TRPO outperformed PPO in terms of exploration
• PPO was not able to stabilize the optimal policy generated by TRPO
• Hyperparameter tuning is extremely important when experimenting 

with different RL environments
• Without a reference gait trajectory, the learned policy depends on a 

well defined reward function 
• Variations to the quadrupeds mass, leg lengths, joint friction, sensor 

noise, ect… May improve the robustness of the learned policy

• Developed in a Google Colab Notebook for ease of access

https://colab.research.google.com/drive/14gOUZhOGHNf3ZvtpfUbgGGii3tcnbgbv?usp=sharing
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Future Work
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Investigate Multi-agent reinforcement learning methods

Provide a reference trajectory for stable policy

Deploy methods onto physical systems 
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Policy Gradient Theorem
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Environment: Overcoming Implementation Challenges
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• Physics/Kinematics
• Bullet Physics engine handles the model environment interaction. 
• All components have mass and inertia matrices. 
• Joints have friction and dampening.

• Actuator Models
• Accurate models of the motors operating characteristics are used to 

generate actions 
• Simulated Latency 

• Observations are back logged and sent with a delay to simulate the 
latency a real control system would exhibit (0.001 – 0.002s)

• Gaussian noise is injected into state signals
• Parallelizable Agents

• Its possible to spin up several agents in headless mode, which can help 
expedite training if the algorithm exploits multithreading or tensor cores.
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PPO Tuning Results
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Hyperparameters Values

Number of State Steps until Terminal State 𝑛𝑛𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 1276

Discount Factor 𝛾𝛾 0.909

Learning Rate 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0.00317

Entropy Coefficient 𝑒𝑒 3.59e-8

Clipping parameter controlling policy update rate 𝜖𝜖 0.345

Clipping parameter controlling value function update rate 0

# of epochs when optimizing the surrogate objective function 𝐾𝐾 4

Generalized Advantage Estimator factor 𝜆𝜆 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -

Value Function Network (DNN) 2 layers with 64 hidden units each -
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TRPO Tuning Results
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Hyperparameters Values

Time steps per batch 𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏 293

Discount Factor 𝛾𝛾 0.974

Kullback-Leibler loss threshold 0.0503

Weight for the entropy loss 5.03e-3

The compute gradient dampening factor 0.0135

Value Function Step Size 3.2e-3

Value Function # of iterations for learning 3

Generalized Advantage Estimator factor 𝜆𝜆 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -

Value Function Network (DNN) 2 layers with 64 hidden units each -
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PPO+TRPO Tuning Results
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Hyperparameters New Values Old Values

Number of State Steps until Terminal State 𝑛𝑛𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 1277 1276

Discount Factor 𝛾𝛾 0.913 0.909

Learning Rate 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 1.83e-5 0.00317

Entropy Coefficient 𝑒𝑒 5e-4 3.59e-8

Clipping parameter controlling policy update rate 𝜖𝜖 0.379 0.345

Clipping parameter controlling value function update rate 0 0

# of epochs when optimizing the surrogate objective function 𝐾𝐾 1 4

Generalized Advantage Estimator factor 𝜆𝜆 0.861 0.988

Policy Network (DNN) 2 layers with 64 hidden units each - -

Value Function Network (DNN) 2 layers with 64 hidden units each - -
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PPO Results
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• On-Policy method which aims to learn iteratively through a 
surrogate objective function, which learns new policies for a 
specified number of epochs. 

• After these epochs have passed, the policy update is performed 
carefully by choice of a clipping hyperparameter which ensures 
policy update steps are not too large.  
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