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Policy Gradient Methods

@ Methods that can learn a parameterized policy without the help of a value or
action-value function.

@ The methods usually seek to maximize a performance index:

JO) =V, = E Z'}ftm] (1)
Tr~Tg —0
e Update rule follows gradient accent:
Ois1 = 0: + aV.J(6;) )

o All policy gradient methods follow this general scheme.

e Value (or Q) function can still be used for reducing variance (for faster
convergence).

@ Techniques that try to learn the value function along side the policy are termed
actor-critic methods. (Actor - policy; Critic - value function)
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Policy Gradient Methods: Advantages

e Value functions are learned to eventually determine a policy, so why use a broker
when we can learn the policy directly!

@ In certain cases learning a policy can be much more straight forward than
learning a value function.

@ More effective in dealing with continuous state and/or action spaces.

o Knowledge of the problem can be utilized to guide the policy search.
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Limitations of Plain Policy Gradient

@ Poor sample efficiency: data is discarded after each update.

e due to on-policy learning/estimation
e stable but extremely slow to converge

e Difficulty in deciding and updating proper step size.
e even small changes in parameter could result in large changes in policy

e Importance Sampling:

P(r |6)
VoJ(6) = ng’ Z P((Tt 0 V' Vologme (ar | s¢) Ag (st, at) (3)

P(r|6) _ H mo (aer | siv)
P (7|6 mor (ar | svr)

(Importance sampling ratio) (4)

t’'=0

e data can be used more efficiently (off-policy learning)
e unstable due to exploding or vanishing gradients (importance sampling ratio)
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Comparing 2 Policies

e For any two policies 7 and 7'

>0 5
J() = Im) = B, {30447 (s >
t=0

_ 1 7' (a | s) s o (6)
1—73;‘%? LT(MS)A(’ )}

L1 m(a]s) gm0 (7)
B T A

B T | <L) O

discounted future state distribution, d™(s) = (1 —~) > 2 v P(si = s | )

e Relative performance in terms of ‘Loss function’ L, (7") and KL divergence:

7 (x) = (I + Le (+))| < €,/ E_Dxcr, (@[[m) 5] ®)

where, Dicr, (7'||7) [s] = > ,c a7 (a] s)log = m'(als) (10)

m(als)
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Monotonic Improvement in Policy

e Optimize over new function:

max L, (ﬂ") — (' max [DKL (W'Hﬂ'k) [SH (11)

g4 s~d™k
. . . ’ . . .
maximizing 7' is an improved policy.
e Surrogate objective used:
/
arg max L, (ﬂ' )
.-n-.'

st. E [Dgp (7'||me) [s]] <6 (12)

s~d™k

e Some well known policy gradient methods approximating this objective:

e Natural Policy Gradient
e Trust Region Policy Optimization
e Proximal Policy Optimization
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Trust Region Policy Optimization

@ Linear approximation of objective:

Lo, (8) ~ Loy (6) + ¢ (8 —61) 9= VoL, (6) (13)

01

@ Quadratic approximation of constraint:

Dicr (0]|6:) ~ % 0 —0.)"  H(O—0,) H=V3Dxr (00 9 (14)
K
o Optimization problem:
Arg max g’ (0 —6y) (15)
s.t. % 0 —0.)" H(O—6,) <6 (16)
e Solution to approximated problem:
Or+1 = Op + nglgﬂlg (17)

o H™'g: estimated using Conjugate Gradient (CG)

o Line search in direction of the estimated gradient: to make sure Ly, () > 0 and
Drr (0]|6r) < 0 (6 defines the trust region). Adjust ¢ to meet the conditions.
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Proximal Policy Optimization

e PPO with adaptive KL penalty: solves unconstrained optimization problem

arg max Lo, (0) — BxDrcr, (0]|0k) (18)

[k 1s adaptive and optimization is performed over a batch.

d=Dgp(.),if d <dtarg/1.5,8 < B/2, if d > diarg x 1.5, 8 < 3 x 2.
e PPO with Clipped Objective:

o (an | 51) | CL.lfT'<a
re(6) = - cip(rab) =< bifr>b (19)
Tola (at | s¢) r otherwise
T A .
CLIP(Q) _TET Z {min (rt(H)A:k,clip (re(0),1 —e, 1 +€) A:kﬂ (20)
t=0

CLIP(H)

arg max Lg, (objective without critic)

LEHIPRVIRS (9) = Bo [LTM7(8) = en LY T (6) + caS [ (1) 21)

CLIP+VF+S (8)

argmax L L, (objective with critic)
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Application to Learned Locomotion

* Deep Reinforcement Learning is actively researched and applied
to physical robots with impressive results. [1]

* Most methods rely on domain specific knowledge, model based
approaches, or even imitation learning. [2]

* Our study aims to evaluate how a quadruped agent can learn a
gait motion completely from scratch.
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Environment: Spaces, Rewards, Episodes

- State Space S € R?8

* Motor Angles S € q = {411,912, 921, 922, 931, 932 941, G2}

* Motor Velocities S € q = {§11,912, 921,922,931, 932, Ga1, a2}
« Motor Torques S € T = {Ty1, T12, T21, T22, T31, T32, Ta1, Taz}

- > 5 —

- Base Pose S €ep ={x,y,z,w}
* Action Space S € R8

* Motor Angles A € qgesirea = {911, 912> 421, 922, 431, 932, 941, Qa2 }
 Reward Function

* Penalizes not moving forward and actuator effort

*R=(p,— pn—l)T) — wAt|T, - q|
* Terminal State

e Center of mass is <0.13 meters to the ground
* Simulation reaches 1000 steps forward in time
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Hyperparameter Tuning

Slice Plot

Hyperparameter - . " Load Best
Distributions - T e W ... Hyperparameters

oo ) Lose

. | I Agent .
clip » Optuna N A R —| clip

= Model
Runs Batch Create Agent
14 Optimization Jobs Y
PPO2 Tuning TRPO Tuning

100 permutations

100 permutations

200,000 Training Episodes/permutation
~24 Hours to complete

100,000 Training Episodes/permutation
~24 Hours to complete
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Visualizing Final Learned Policies

PPO2 Agent After 4 Million Episodes TRPO Agent After 4 Million Episodes
Avg. Reward = 0.5 +0.05 Avg. Reward =2.5 +1.5
Training Time = 5 Hours Training Time = 6 Hours
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Training Scheme

Episodic Reward

* PPO and TRPO were trained 2
separately with their own optimal 17
parameters. ;

 Benchmarks of the learned 13
models were saved every 200k B
episodes

* Since TRPO performed well in
exploration, the policy and value
function networks were extracted
and placed into a PPO agent to ;
continue training.

——TRPO
—— TRPO+PPO

Average Reward / Episode

—PPO2

* The hypothesis was that the
reward sighal noise would reduce
since PPO showed little variance ) PPO Pick-up Point
during learning. 5

0 1 2 3 4 5 6 g 8
Millions

Training Episodes

MES8930 Final Project Policy Gradient Methods: Learned Locomotion



Best of both worlds?

* Using TRPO to find a high return policy and value function
network, we then transfer this network to a PPO agent and run
optimization starting 4 Million episodes.

* The PPO agents best hyperparameters were then trained for an
additional 4 Million episodes to attempt to improve the quality of
the policy and value function networks.

V(6 b)
TRPO Fitted \b /@ New PPO Fitted
Hyperparameters  1pp, (0;D) Hyperparameters
~24 Hours
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Visualizing Final Learned Policies (Best of the Rest)

—

TRPO to PPO2 Agent After ~7 Million Episodes TRPO Agent After 4 Million Episodes
Avg. Reward =3 + 1.5 Avg. Reward =2.5 +1.5
Training Time = 11 Hours Training Time = 6 Hours
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Comparison

* Qualitative Assessment

* PPO: Took too literally the reward function and converged to a local
minimum solution.

* TRPO: Achieved a fast novel gait motion but with high speed comes
greater risk of losing or gaining a significant amount of rewards.

e Value Function Approximation

* Clearly TRPO achieves a higher return, but suffers from high variance in
the policy update without clipping.

* PPO starting with a high return policy still was not able to stabilize the
policy and value function networks.

* Increasing the # of layers and hidden units may be necessary for this
problem

* Optimization Results

* Running both agents for a longer number of episodes during optimization
would benefit the in the long-term stability of the learned policy and value
function networks.
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Summary

* A total time of 72 Hours tuning hyperparameters and 24 Hours raining
* TRPO outperformed PPO in terms of exploration
 PPO was not able to stabilize the optimal policy generated by TRPO

* Hyperparameter tuning is extremely important when experimenting
with different RL environments

* Without a reference gait trajectory, the learned policy depends on a
well defined reward function

 Variations to the quadrupeds mass, leg lengths, joint friction, sensor
noise, ect... May improve the robustness of the learned policy

* Developed in a Google Colab Notebook for ease of access ‘ J
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https://colab.research.google.com/drive/14gOUZhOGHNf3ZvtpfUbgGGii3tcnbgbv?usp=sharing

Future Work

\/ Investigate Multi-agent reinforcement learning methods
f Provide a reference trajectory for stable policy

*—i; Deploy methods onto physical systems
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Policy Gradient Theorem

o Policy Gradient Theorem:
VI0) x 3 u(9) Y ax(s.0)Va(a | 5.6)
e New update rule:
01 =0:+ad q(Si.a,w)Vr(a|S:.0)

Vﬂ' (At | Stygt)
T (At | Stggt)

Oir1 =0+ a (G —b(Sh)) (REINFORCE with baseline)

e For advantage estimate:

A‘*‘Te (3: a’) — Qﬂa (Sa a’) - Vﬂ'e (3)

Vol (0)= E |Y ~'Vilogm (ar | st) Ang (si,ar)
T~Tg —0
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Environment: Overcoming Implementation Challenges

* Physics/Kinematics
* Bullet Physics engine handles the model environment interaction.
* All components have mass and inertia matrices.
 Joints have friction and dampening.

* Actuator Models
* Accurate models of the motors operating characteristics are used to
generate actions
* Simulated Latency

* Observations are back logged and sent with a delay to simulate the
latency a real control system would exhibit (0.001 - 0.002s)

e Gaussian noise is injected into state signals

* Parallelizable Agents

* |ts possible to spin up several agents in headless mode, which can help
expedite training if the algorithm exploits multithreading or tensor cores.
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PPO Tuning Results

Hyperparameters

Number of State Steps until Terminal State ng.,¢ 1276
Discount Factor y 0.909
Learning Rate [, ;. 0.00317
Entropy Coefficient e 3.59e-8
Clipping parameter controlling policy update rate € 0.345
Clipping parameter controlling value function update rate 0

# of epochs when optimizing the surrogate objective function K 2
Generalized Advantage Estimator factor 4 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -
Value Function Network (DNN) 2 layers with 64 hidden units each -
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TRPO Tuning Results

Hyperparameters

Time steps per batch t, i 293
Discount Factor y 0.974
Kullback-Leibler loss threshold 0.0503
Weight for the entropy loss 5.03e-3
The compute gradient dampening factor 0.0135
Value Function Step Size 3.2e-3
Value Function # of iterations for learning 3
Generalized Advantage Estimator factor 4 0.988

Policy Network (DNN) 2 layers with 64 hidden units each -
Value Function Network (DNN) 2 layers with 64 hidden units each -
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PPO+TRPO Tuning Results

Hyperparameters Old Values

Number of State Steps until Terminal State ng.,,

Discount Factor y
Learning Rate [, ;.

Entropy Coefficient e

Clipping parameter controlling policy update rate €

Clipping parameter controlling value function update rate

# of epochs when optimizing the surrogate objective function K

Generalized Advantage Estimator factor A
Policy Network (DNN) 2 layers with 64 hidden units each

Value Function Network (DNN) 2 layers with 64 hidden units each
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1277

0.913
1.83e-5
5e-4
0.379

1276

0.909
0.00317
3.59e-8

0.345



PPO Results

2e-7
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* On-Policy method which aims to learn iteratively through a
surrogate objective function, which learns new policies for a
specified number of epochs.

e After these epochs have passed, the policy update is performed
carefully by choice of a clipping hyperparameter which ensures
policy update steps are not too large.
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