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ABSTRACT

The focus of this paper is to provide insight regarding the importance of policy gradient methods when
applied to continuous systems. We study the development of policy gradient algorithms, and explain
when and how policy gradients should be applied or when they are inadequate for the given problem.
We specifically investigate 2 well known algorithms which utilize policy gradient methods, Proximal
Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO). To better demonstrate
in practice how these algorithms would need to be implemented, we choose to utilize a simulation
environment to train a quadrupedal robot to learn a gait planning and control policy. We demonstrate
the use of developmental tools which help to expedite training, hyper-parameter tuning, and model
analysis. Altogether we present a comparison of these results, and provide qualitative commentary on
the behaviors learned by the quadrupedal robot over time between the two algorithms.

1 Introduction

We propose a straightforward approach to implementing, evaluating and optimizing deep policy gradient algorithms
through the use of open-source optimization libraries and high-fidelity simulation environments. Our work shows
promising results and opens up new questions regarding the best practices that could be followed when implementing
reinforcement learning to a new environment. Our results showcase the ability of an extremely high dimensional
non-linear dynamic system to be controlled by a learned control policy in a streamlined manner. In future work we plan
on implementing these control policies onto our own physical system inspired by Stanford Doggo [1], seen in figure 1.

Figure 1: Clemson University Distributed Intelligence and Robot Autonomy (DIRA) Tigger Quadrupedal Robot [WIP].
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1.1 Relevance and Applications

Robots and locomotion are an extremely popular and growing field of research and practice in the past decade. Open
source projects such as the Stanford Doggo and Stotch which lower the cost barriers to study the control of these
complex dynamical systems [1], [2]. Boston Dynamics has impressed the world with their vast array of monopeds,
bipeds, and most popular, quadrupedal autonomous robots [3]. A key component of these modern marvels is their
ability to adapt to the environment and execute elegant locomotion through even the most adverse conditions. Surely
more than just a PID controller is going to have to cut it when it comes to approaching the solution to locomoting over
uneven terrains in varying climates. Recent success in developing gait trajectory controllers and position controllers has
emerged from solutions that utilize deep reinforcement learning techniques.

1.2 Existing Work

The focus of our research centers around quadrupedal robots, and recently researchers at ETH Robotics System
Lab developed their own high fidelity simulation environment, Raisim, which is specifically designed for training
reinforcement learning agents [4]. Access to this environment is only available to approved researchers, but benchmarks
show [5] that it is superior to popular open source environments such as pybullet, MuJuCo, DART, et al [6]. Here are
several papers which report high accuracy when compared to the physical machine [7], [8], [9]. Hierarchical deep
reinforcement learning approaches have been explored for bidpedal locomotion [10] where planning and control are
treated as two separate controllers which are learned together through reinforcement learning. This decoupling at the
planning level is also seen in recent works on ANYMAL in the DeepGait papers [11], [12]. Although the decoupling
of planning at the planning and control level has been seen before, there is interest in decoupling the control of the
actuators themselves into multi-agent reinforcement learning problems where there is a shared objective that could be
in the form of an shared observation or carefully crafted reward function. Some discussion around this topic is reserved
for the simulation section since it deals with the specific application of quadrupedal robots.

1.3 Main Challenge

Most reinforcement learning algorithms are extremely sample inefficient, and often require millions of agent environment
interactions before something useful can be learned. Decent results in reinforcement learning agents require algorithms
to have their hyperparameters tuned. These hyperparameters could influence directly the policy, value function, rewards,
and for gradient based methods the underlying deep neural networks hyperparameters such as the number of layers,
hidden units, activation functions, ect. Its a complex optimization problem which is impossible to fully solve in a
realistic setting, for example you are a student who has a report due in a week but training takes 24 hours for what could
be a subpar result. To help alleviate some of this frustration, we recommend learning from our methods to ease the
deployment of gradient based algorithms into any new complex environment.

2 Theory

2.1 Basics on policy gradient

A policy is a probability distribution over actions for an agent. Deep neural networks are a popular way to approximate
the policy. The network takes the state as the input and gives out a distribution over actions. Policy gradient methods
are the ones that do not rely on the value functions to get a policy. The objective that is being optimized is the expected
discounted return concerning the policy given by eqn(1).

J(θ) = Vπθ = E
τ∼πθ

[ ∞∑
t=0

γtrt

]
(1)

This expectation can be over a distribution of possible initial states. The performance index is parameterized with
parameters θ. The parameter update is made in the direction of the gradient of the performance index J , scaled by some
factor α or gradient ascent in other words. All PG methods follow this general scheme in eqn (2).

θt+1 = θt + α ˆ∇J(θt) (2)

Though, the value functions are not required, they can be used additionally to reduce the variance and speed up the
learning. The methods that learn some form of value function, along-side the policy are termed as the actor critic
methods, where the policy represent actor and value function represents critic.
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2.2 Advantages of Policy Gradient Methods

There are some key factors that make the policy gradient methods attractive.

• Many RL algorithms, like deep-Q learning, rely on learning the estimates of the value functions. The agent
must identify how valuable each state is to select the action that leads to the most important states. But this
assumes that it is possible to learn the action-value function accurately. In many cases, the value functions
could be incredibly complex and challenging to learn on realistic time scales. In some cases, a working policy
may be much simpler and, therefore, easier to approximate. The policy gradient agent can learn to overcome
certain situations much more swiftly than value-based methods. i.e., policy gradient could be more efficient.

• Another point that makes the policy gradient techniques attractive is what if the optimal policy is deterministic.
For simplistic environments with apparent deterministic policy, keeping some finite ε could make the agent
explore the environment unnecessarily. For some complicated settings (or tasks), the optimal policy may very
well be deterministic but possibly not very obvious. In theory, the exploration part ε can be decreased with
time and making the policy eventually settle to a deterministic policy. But, the rate of ε decay is challenging
to decide. The policy gradient, even though stochastic, can approach a deterministic policy over time. More
profitable actions are picked more frequently, creating momentum towards the locally optimal, deterministic
policy.

• Based on the nature of the problem, it could be significantly easier and efficient to learn the policy directly,
instead of learning it through a value function. Additionally, the policy gradient methods can be more effective
in dealing with continuous state and action spaces. And most importantly, it is easier to induct the domain
knowledge to guide the policy search in comparison with learning the value function.

2.3 Policy Gradient Theorem

The objective of reinforcement learning is to maximize the agent’s performance. The weights and biases of the neural
networks (θ) parameterize The performance index J . The update rule for the parameters is θnew = θold+ some rate α
times the gradient of the performance metric (∇ ˆJ(θold)). According to the policy gradient method,

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇θπ(a|s, θ) (3)

This is equivalent to an expectation (over a stationary distribution following policy θ) and following some mathematical
manipulation results in,

∇J(θ) = Eπ

[∑
a

π(at|st, θt)qπ(st, at)
∇θπ(at|st, θt)
π(at|st, θt)

]
(4)

= Eπ
[
qπ(st, at)

∇θπ(at|st, θt)
π(at|st, θt)

]
(5)

= Eπ
[
Gt
∇θπ(at|st, θt)
π(at|st, θt)

]
(6)

Therefore the update rule becomes (this the update rule for the REINFORCE algorithm),

θt+1 = θt + αGt
∇θπ(at|st, θt)
π(at|st, θt)

The Gt term is the discounted future returns (actually observed) and the gradient of the policy gives the direction in the
policy space that maximizes the chance of repeating the action At when in state St. This process raises the probability
of picking the action with large expected future returns, and the opposite happens to the actions with below-par expected
future returns. The agent can learn to maximize the reward over time, making the policy gradient methods very powerful.
A baseline could be included in the update term alongside the discounted future returns. Addition of the baseline does
not add any bias but it can help with the variance. The update rule with baseline included is called as REINFORCE
with baseline.

θt+1
.
= θt + α (Gt − b (St))

∇π (at | st,θt)
π (at | st,θt)

(REINFORCE with baseline) (7)

The term Aθ representing the difference between the Q-function and the value function V ; where Q gives the expected
return and V provides the baseline. Aθ is also called as the advantage estimate, because it tells us, how advantageous it
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is, to choose an action compared to a weighted average over all actions. Gradient of the performance index in terms of
advantage estimate is given in equation (9).

Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) (8)

∇θJ (θ) = E
τ∼πθ

[ ∞∑
t=0

γt∇θ log πθ (at | st)Aπθ (st, at)

]
(9)

2.4 Limitations of plain policy gradient

Policy gradient methods try to optimize the performance index we are interested in directly. But these methods are
not very efficient in using old data (trajectories based on old/different policies) due to on-policy learning. Plain policy
gradient substitutes the gradient estimate into the gradient ascent method. We can modify this method to more effectively
update the policy based on the experience. Usually, the data is discarded after the computation of a single gradient. As
a result, the information extracted in one iteration may only be a fraction of what is available for learning. This is even
more prominent when the gradients vary over a large scale. Progress in the direction of small gradients will be slow and
visa-versa. Instead of taking a gradient for every trajectory (such high-frequency changes make learning slow or even
unstable), an optimization problem can be solved for a batch of data to find the most promising gradient direction. The
agent has a significant probability of selecting any action in any given state; therefore, it is challenging to regulate the
variation in the episodes due to the extremely large (infinite, in continuous case) number of possible actions.

It is difficult to obtain a learning rate α, that allows sufficient learning and at the same time keeps the algorithm
stable. This is difficult to achieve, because estimating the size of the jump in policy space based on the update in the
parameter space is not straightforward. It is challenging to choose a step size that works over the complete optimization
process, allowing for a reasonable learning rate without inducing instability. The data that the neural network receives is
non-stationary since as the policy changes, the data (observations and rewards) is sampled from a different distribution.
Statistics of the input are changing over time, making it hard to choose a good step size that can work over the entire
course of the learning process. A too big step is much more damaging in the RL problem than static optimization
problems like supervised learning. Suppose we start collecting trajectories at any stage of the process from a bad policy
that does not visit the optimal locations in the state-space. In that case, it becomes really difficult for the algorithm to
come back to a more suitable policy after that point. Result in a steep drop in performance. It is challenging to design
an algorithm that performs well and guarantees convergence to a local optimum.

The simple policy gradient methods can be improved upon by approximately solving an optimization problem using the
data collected under current policy. (Vanilla policy gradient methods use the estimates/approximations of the policy
gradients (these are obtained as the sample averages) to directly modify/update the parameters of the policy). The idea
is that this helps in extraction of a bit more information from data compared to the plain approach. To deal with the
variance between the episodes, we can scale the rewards with some baseline without introducing any bias. The simplest
baseline to use is the average reward from the episodes. To deal with sample inefficiency, we can let the agent generate
a batch of trajectories so that it has a chance of visiting the state more than once before updating the parameters. This
introduces an additional hyper-parameter (batch size of updates) but usually results in significantly faster convergence
to a good policy. Increasing the batch size could be the difference between no learning (at least visible in terms of
performance) and something (some policy) that works nice.

The problem of sample inefficiency can be addressed to some extent by introducing the importance sampling for
calculating the gradient as in equation (10). This is nothing but a consequence of the policy gradient theorem.

∇θJ(θ) = E
τ∼θ′

[ ∞∑
t=0

P (τt | θ)
P (τt | θ′)

γt∇θ log πθ (at | st)Aθ (st, at)

]
(10)

P (τt | θ)
P (τt | θ′)

=
µ (s0)

∏t
t′=0 P (st′+1 | st′ , at′)πθ (at′ | st′)

µ (s0)
∏t
t′=0 P (st′+1 | st′ , at′)πθ′ (at′ | st′)

=

t∏
t′=0

πθ (at′ | st′)
πθ′ (at′ | st′)

(Importance sampling ratio)

(11)

But the importance sampling itself may give rise to the issue of the exploding or vanishing gradients. As we can see
from equation (11), the importance sampling ratio is a product of multiple fractions. These fractions are nothing but
the probabilities of selecting the same action when in the same state, under two different policies. The fractions are
calculated and multiplied over the entire trajectories. If there is significant mismatch between probabilities of the
policies, for instance one of the probabilities in the denominator is close to zero but the numerator is significantly higher
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or visa-versa then the value of the importance sampling ratio may blow up to a large number or die down to near zero.
This makes the update unstable. Therefore, this measure is not enough to address the issues effectively and an alternate
solution is still required. In this search for robust alternatives, two results turn out to be particularly helpful. The first
one is on comparison of performance of two policies, and the second one is on the monotonic improvement in policy.

2.5 Comparing two policies

The difference in the performance of two policies π and π′, as shown in equation (12), is equal to the discounted sums
of advantage estimates of the policy π averaged over all possible trajectories generated using policy π′.

J (π′)− J(π) = E
τ∼π′

[ ∞∑
t=0

γtAπ (st, at)

]
(12)

=
1

1− γ
E

s∼dπ
a∼π′

[Aπ(s, a)] (13)

=
1

1− γ
E

s∼dπ′

a∼π

[
π′(a | s)
π(a | s)

Aπ(s, a)

]
(14)

≈ 1

1− γ
E

s∼dπ
a∼π

[
π′(a | s)
π(a | s)

Aπ(s, a)

]
(15)

= E
τ∼π

[ ∞∑
t=0

γt
π′ (at | st)
π (at | st)

Aπ (st, at)

]
.
= Lπ (π′) (16)

dπ(s) = (1− γ)

∞∑
t=0

γtP (st = s | π) (17)

If γ is strictly less than 1, then this can be equivalently written as in equation (14). Notice here, that the actions are
sampled using policy π, but the states are sampled over the discounted future state distribution for policy π′. We can
see this distribution as the steady state distribution of policy π and discount factor γ.

If two policies π and π′ are close enough, then the state distribution dπ
′

can be replaced with dπ and the equation (15)
gives us an approximation of the relative performance of the two policies. Equation (16) is defined as the loss function.
One thing that still remains unclear is, how good the approximation in equation (16) is. As it turns, out the absolute
error between the actual loss and the loss function in (16) is bounded by some constant C, times the square root of the
average KL divergence over all states of two policies according two equation (18).

|J (π′)− (J(π) + Lπ (π′))| ≤ C
√

E
s∼dπ

[DKL (π′||π) [s]] (18)

DKL (π′‖π) [s] =
∑
a∈A

π′(a | s) log
π′(a | s)
π(a | s)

(19)

The KL divergence term here is used as a metric of distance between two distributions. Since equation (16)is a good
approximation of equation (12), for π and π′ sufficiently close, advantage eqn(16)offers over (12) is that, the trajectories
are sampled using policy π, but it somehow gives an estimate on how good the policy π′ is. Therefore we can form an
equivalent optimization problem, that can help us find the next best policy π′ in the neighbourhood of π.

2.6 Monotonic Improvement in Policy

This optimization problem takes the form of equation (20), which uses maximum KL divergence between policies π
and π′ as the regularization term to represent the worst case scenario.

max
π′

Lπk (π′)− C max
s∼dπk

[DKL (π′‖πk) [s]] (20)

The monotonic improvement theory then guarantees that, the optimal new policy πk+1 will be at least as good as the
old policy πk. But, optimizing equation (20) is a difficult task, especially due to maximum over KL divergence term.
Therefore an approximation of this is obtained as equation (21), where the objective is the loss function and a constraint
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is included that limits the average KL divergence to be less that some small positive number δ. Equation (21) is the
basis of TRPO and PPO.

arg max
π′

Lπk (π′)

s.t. E
s∼dπk

[DKL (π′‖πk) [s]] ≤ δ
(21)

2.7 Trust Region Policy Optimization

In particular for TRPO, the objective loss function is approximated as a linear/affine function of parameter θ, about the
old loss function Lθk . The constraint is approximated as a quadratic function of θ. Therefore the approximated problem
becomes a problem with linear objective and quadratic constraint, as in equation (24).

Lθk(θ) ≈ Lθk (θk) + gT (θ − θk) g
.
= ∇θLθk(θ)

∣∣
θk

(22)

D̄KL (θ‖θk) ≈ 1

2
(θ − θk)

T
H (θ − θk) H

.
= ∇2

θD̄KL (θ‖θk)

∣∣∣∣
θk

(23)

arg max
θ
gT (θ − θk)

s.t.
1

2
(θ − θk)

T
H (θ − θk) ≤ δ

(24)

This formulation has an analytic solution given by equation (25).

θk+1 = θk +

√
2δ

gTH−1g
H−1g (25)

But calculating H−1 for equation (25) is impractical for large systems. Therefore, H−1g is estimated using conjugate
gradient method. Because of all these steps of approximation, there is no guarantee that Lθk ≥ 0 (which is required for
improved next policy) or the KL divergence between policies is less than the threshold δ (which is required to make
sure that the approximation holds). Therefore, a line search method is implemented in the direction of the estimated
gradient, which tries to find the biggest step size parameter, by exponentially reducing the size of the steps, till the
conditions are met.

2.8 Proximal Policy Optimization

The PPO tries to solve a different form of equation (20). In PPO with adaptive KL penalty,

arg max
θ
Lθk(θ)− βkD̄KL (θ‖θk) (26)

the regularizing term maximum over the KL divergence is replaced by average over KL divergence. βk is
updated after every every batch. d = D̄KL(.), if d ≤ dtarg/1.5, β ← β/2, if d ≥ dtarg ∗ 1.5, β ← β ∗ 2. The
problem can be approached via mini-batch stochastic gradient descent using Adam type optimizers. But in this
algorithm the KL constraint is not always satisfied, also the effect of adaptive βk is not as straight forward as effect
of changing δ in TRPO. The empirical performance of this type of PPO is not as good as the PPO with Clipped Objective.

In PPO with clipped objective,

rt(θ) =
πθ (at | st)
πold (at | st)

, clip(r, a, b) =

{
a if r < a
b if r > b
r otherwise

(27)

LCLIPθk
(θ) = E

τ∼πk

[
T∑
t=0

[
min

(
rt(θ)Â

πk
t , clip (rt(θ), 1− ε, 1 + ε) Âπkt

)]]
(28)

arg max
θ
LCLIPθk

(θ) (objective without critic) (29)
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LCLIP+V F+S
t (θ) = Êt

[
LCLIPt (θ)− c1LV Ft (θ) + c2S [πθ] (st)

]
(30)

arg max
θ
LCLIP+V F+S
θk

(θ) (objective with critic) (31)

the regularizing term is removed and the objective is modified to include a clipping term, expected to emulate the effect
of the KL constraint. This clipping term does not allow the probability ratio rt(θ) to go out of a predefined range. As a
result the clipped objective function looks like the one in equation (29).

Unlike TRPO, both the PPO algorithms rquire a separate arrangement to estimate the advantages Aπ . Therefore, these
methods also fall under the actor-critic category. If DNN based parameterization is used, for PPO and the same network
estimates both the policy and advantage Âπ, then the loss function is modified to include additional terms. LV Ft : for
reducing error in the estimation of the value function, and s[πθ](st): entropy regularization term to make sure that
enough exploration happens. The modified objective function is then expressed as in equation (31). This in effect
allows the implementation of parallalizable actor-critic methods like A2C, for simulations.

3 Algorithm

Algorithm 1 Trust Region Policy Optimization [13]
Input: Initial policy parameters θ0
Output: Optimal policy parameters θ?
for k = 0, 1, 2, . . . do

Collect set of trajectories Dk on policy πk = π (θk)

Estimate advantages Âπkt using any advantage estimation algorithm
Form sample estimates for
- policy gradient ĝk (using advantage estimates)
- and KL-divergence Hessian-vector product function f(v) = Ĥkv

Use CG with ncg iterations to obtain xk ≈ Ĥ−1k ĝk

Estimate proposed step ∆k ≈
√

2δ
xTk Ĥkxk

xk

Perform backtracking line search with exponential decay to obtain final update
θk+1 = θk + αj∆k

end for
return

Algorithm 2 Proximal Policy Optimization [13]
Input: Initial policy parameters θ0
Output: Optimal policy parameters θ?
for k = 0, 1, 2, . . . do

Collect set of partial trajectories Dk on policy πk = π (θk)

Estimate advantages Âπkt using any advantage estimation algorithm
Compute policy update

θk+1 = arg maxθ LCLIPθk
(θ)

by taking K steps of minibatch SGD (via Adam), where
LCLIPθk

(θ) = E
τ∼πk

[∑T
t=0

[
min

(
rt(θ)Â

πk
t , clip (rt(θ), 1− ε, 1 + ε) Âπkt

)]]
end for

return

4 Results

In reinforcement learning, agents train on data which is collected through their interactions with the environment.
Typically, the algorithms are sample inefficient and require extended periods of time to collect the interactions between
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the agent and environment. Its for this reason that selecting a high fidelity simulation environment to generate the
training data is an important requirement, ensuring that the simulation represents the physics of the problem being
investigated. We choose to use the Bullet Physics Engine by creating a PyBullet [6] simulation environment to train
a control policy for a quadrupedal robot. We can also utilize the open source openai gym library to help streamline
implementation in a consice fashion [14] The decision to use this simulation environment was based on the past
success of researchers [15] in transferring their learned policies from the simulation environment onto the physical
robot. This ’reality gap’ between the simulated environment and real world is often a limiting factor to most simulation
environments that fail to capture an accurate model of the actuators dynamics and neglect the latency that exists in a
real robotic system.

4.1 Simulation:

The quadrupedal robot model used in the PyBullet simulation is the Minitaur from Ghost Robotics as seen in figure 2c.
The robot’s legs use two motors directly connected to the legs upper linkages. A similar actuator model is shown in
Figure 2a where there is a gear train in between the motor and linkages. The motors are aligned co-axially and are
actuated through position control sequences, the legs coordinate of reference is shown in figure 2b. The model of the
robot contains information about the mass of the components, friction at the joints, and integrates a more accurate
actuator model.

(a) Quasi-Direct Drive Actuators (b) Symmetric five bar linkage

(c) Minitaur Agent

Figure 2: Quadruped Agent and Actuator Model

An important first step to formulating the reinforcement learning problem within this environment is defining the
observations, actions, and the reward function. The observation space S ∈ R28 for the agent is based on proprioceptive
measurements from the actuators and pose measurements from at the center of mass of the robot. Altogether the
observation space includes pose, p, quaternions. The observations extend to the actuator, where each legs 2 motors
provide their motor angles q, motor angular velocities, q̇, and motor torques T . For our quadruped robot this totals to 8
motors with 6 observable states per leg. In summary

p∈ S = ~x, ~y, ~z, ~w

q ∈ S = q11, q12, q21, q22, q31, q32, q41, q42
q̇ ∈ S = q̇11, q̇12, q̇21, q̇22, q̇31, q̇32, q̇41, q̇42

T ∈ S = T11, T12, T21, T22, T31, T32, T41, T42

(32)
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The reward function is designed to maximize linear forward velocity and penalize effort from the actuators. The reward
function is defined explicitly in equation (33) below.

R = (pn − pn−1) ~x − w∆t |Tnq̇n| (33)

Where pn is the position of the center of mass in the current time step and pn+1 is the position of the center of mass in
the next time step. The actuator model developed for this simulation environment models the dynamics of an ideal DC
motor. This actuator model was validated against the physical robot in the real world, and it was determined to be
accurate. Another possible approach to this could be through means of system identification, where the actuator is
modeled as a neural network. This approach may be advantageous for quasi-direct drive or linear actuator quadrupedal
leg designs, but since in this case the motors are directly linked to the legs without any intermediary components, it is
easier to take the direct approach as was done here.
The environment resets once the terminal state is reached. The terminal state is defined either to be the 1000th time step,
or when the center of mass height falls below 0.13 meters with respect to the ground. These 2 termination conditions
ensure that if the agent falls, the environment will reset. If the agent is able to continue to walk for the 1000 forward
steps of the simulation, then the robot will return to its initial position and begin again. The logic here is that you want
to avoid learning behaviors that might emerge from potential exploitation of the environment since physical damage is
not factored into falling over.

4.2 Hyperparameter Tuning

The algorithms used in our research were implemented by stable-baselines as an improvement to the original im-
plementation from openai’s baselines algorithm library. Each algorithms policy and value function is approximated
using a deep neural network.The Policy Network, πθ, has 2 layers with 64 hidden units each. Similarly, the Value
Function Network, Vπθ , has 2 layers with 64 hidden units each. We did not tune the network parameters, instead we ran
permutations of different parameters which are directly linked to the algorithms being implemented. We used a open
source hyperparameter optimization library, optuna, to perform a study over the range of hyperparameter values given
in Table 1 [16].

Optimal Hyperparameters for ’MinitaurBulletEnv-v0’
Hyperparameter TRPO PPO2
Number of State Steps until Terminal State 16 : 2048 16 : 2048
Kullback-Leibler loss threshold 1e-5 : 1 -
The compute gradient dampening factor 1e-3 : 0.1 -
Value Function Step Size 3e-6 : 3e-3 -
Discount Factor 0.9 : 0.9999 0.9 : 0.9999
Learning Rate - 1e-5 : 1
Entropy Coefficient 1e-8 : 1e-1 1e-8 : 1e-1
Clipping parameter controlling policy update rate - 0.1 : 0.4
Num. of epochs when optimizing the surrogate objective function - 1 : 48
Generalized Advantage Estimator factor 0.8 : 1 0.8 : 1

Table 1: Range of hyperparameters for optuna optimization TRPO and PPO2.

The hyperparameter optimization process took 24 hours to complete for each algorithm. There were 100 trails through
which the optimization algorithm tuned the hyperparameters to obtain the agent with the best average reward after
training for 200,000 episodes. Classical approaches to hyperparameter tuning include brute force search approaches
where a full factorial or latin hypercube sampling of the parameter space is sampled in order to obtain the best final
parameterization. The optimization algorithm performs convex optimization using the log likelihood estimate of
the function being optimized. In this case, our function is our reinforcement agent and instead of find the set of
hyperparameters that minimizes our reward, we need to make the rewards earned during the evaluation of the studied
hyperparameter set negative. This way the optimizer is minimizing the negative log likelihood in order to actually
perform the maximum likelihood estimate of the algorithms hyperparameter set. Optuna uses the scikit optimization
library skopt in order to choose the best next values of hyper-parameters to tune to maximize the agents reward.
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Figure 3: Hyperparameter optimization pipeline

The results for TRPO are shown in figure 4 the dots show the objective value from the optimizer minimizing the negative
reward value for the given trial of hyperparameters. The red line shows the best value obtained during the optimization,
and in this case only about 10 percent of all trials obtained a positive reward. It is possible that a better performing
set of hyperparameters could have been found but performed poorly during the evaluation stage of the process. This
kind of "dumb luck" is what makes finding the best set of hyperparameters extremely difficult for increasing non-linear
dynamic systems.

Figure 4: TRPO optimization coverage maximizing the skopt objective function.

In figure 5 the hyperparameters tuning range is plotted and the points show the value of the parameter, the corresponding
objective value and the darker the dots indicate a larger number of trials evaluated at that particular operating point.
graphs that show low variance in the sample space indicate that the optimal parameter value is likely somewhere within
the neighborhood if the mean. A more robust testing strategy would be to take these results and refine the range of
values to be optimized over within 2 standard deviations of the mean value shown in these graphs. A more in depth
study of the sensitivity of certain values to change can also provide insight as to the extent of which this process should
be repeated before accepting the final parameterization.
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Figure 5: TRPO optimization hyperparameter accuracy per number of trials.

Similar to figure 4, in figure 6 PPO2 followed the same process and achieved generally more successful runs nearing 22
percent positive rewards. Ideally, this objective value would converge more elegantly to some large negative value, but
for both algorithms it may be that the training was not long enough during optimization to truly explore the parameter
space. Longer training times and a greater number of trials should in theory eventually obtain a excellent set of
hyperparameters to maximize the defined reward function. Including hyperparameters to tune the reward functions
weights during this process could be a great way to tune more than just the learning algorithm, but this was beyond the
scope of this study.

Figure 6: PPO2 optimization coverage maximizing the skopt objective function.

In figure 7, we can see where PPO2 performed best for each of the variable hyperparameters studied during optimization.
In both cases for PPO2 and TRPO these plots indicate that the number of trials was sufficient to obtain a reasonably
accurate final solution prior to moving onto the final long term training process.

xi



Figure 7: PPO2 optimization hyperparameter accuracy per number of trials.

Altogether the shared hyperparameters between the two algorithms such as the discount factor ’gamma’, the generalized
advantage estimator factor ’lam’, the number of steps to termination ’n steps’/’timesteps per batch’ were trained within
the same starting range. The discount factors and generalized advantage estimator factors between the two algorithm
converges to the same value, however the number of episodes to termination and entropy coefficient are several orders
of magnitude different. Overall PPO2 was able to find a better initial reward during the 200,000 training episodes, but
in similar work [15] only began to see real results around 4 to 7 million episodes before converging. Their average
reward was sitting around 3-4 for trotting and 6-7 for galloping gaits learning from a reference trajectory. Immediately
from scratch with the optimal hyperparameters for each algorithm we can see rewards as high as 2-3 which is extremely
promising. A summary of the optimization results is shown in table 2.

Optimal Hyperparameters for ’MinitaurBulletEnv-v0’
Hyperparameter TRPO PPO2
Number of State Steps until Terminal State 293 1276
Kullback-Leibler loss threshold 0.0503 -
The compute gradient dampening factor 1.35e-2 -
Value Function Step Size 3.2e-3 -
Discount Factor 0.974 0.909
Learning Rate - 3.17e-3
Entropy Coefficient 5.03e-3 3.59e-8
Clipping parameter controlling policy update rate - 0.345
Num. of epochs when optimizing the surrogate objective function - 4
Generalized Advantage Estimator factor 0.988 0.988

Table 2: Optimal hyperparameters for TRPO and PPO2 after 100 trails and 200,000 training steps per trial.

One additional advantage that makes using this optimization pipeline great for new environments is that you can
visualize the trade-off between hyperparameters to develop better intuition as to how your algorithm fits to the given
problem. This is shown for completetion with examples for PPO2 in figure 8a and TRPO in figure 8b.
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(a) TRPO time to termination and KL Loss Threshold (b) PPO2 learning rate and clip

Figure 8: Topological parameter trade-off

4.3 Trained Agents

PPO2 Agent
Using the optimal hyperparameters from table 2, an agent was trained for 4 Million training iterations. Benchmark
models were saved every 200,000 episodes to later on be able to load the models and evaluate their behavior as training
progressed. The figures in 9 show a superimposed plot of the initial 200,000 episodes and the final 4,000,000 episodes
episodic reward, value function loss and policy gradient loss. These 3 metrics alone can give a good idea as to the
convergence of the agent with respect to the local optimum it found at a consistent 0.5 ± 0.05 average episodic reward.
Just based on the data its clear that the agent learned this behavior near towards the end of the first 200,000 episodes
and never was able to improve its behavior to achieve a different reward. So despite having the apparent best optimal
hyperparameters for the environment, it appears that a cautious solution to exploit the more stable consistent return was
the ultimate result. A video showing the final behavior of the PPO agent can be found here:

(a) Episodic Reward Start to Finish (b) Value Function Loss

(c) Policy Gradient Loss

Figure 9: PPO2 Agent Training Results Superimposed at 200k and 4M training episodes

TRPO Agent
The same plots shown for PPO2 are shown for TRPO in figure 10. Immediately there is a stark contrast in the variance
of the reward signal, and its increasing as the agent improves towards 4 Million episodes. This is a direct consequence
of the learning approach, finding a stable policy to perform a fast gait motion satisfying only the simple goals defined
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in the reward function does not guarantee elegance in the learned result. Every miss step or mistake due to poor foot
placement will immediately impact the reward signal. The average reward for the trained TRPO agent was 2.5 ± 2.
A video showing the learning of the TRPO agent from 200,000 episodes to 3,000,000 episodes can be found here:
https://youtu.be/Z4BZgIL5d0Y

(a) Episodic Reward Start to Finish (b) Value Function Loss

(c) Policy Gradient Loss

Figure 10: TRPO Agent Training Results Superimposed at 200k and 4M training episodes

An ideal agent for this environment would be one that combines the early success of TRPO to learn a fast gait motion,
and PPO to help stabilize the learned policy and value function networks. This idea of a combined learning approach is
what inspired the results obtained in the following paragraph.

Combined Approach
The advantage of keeping the size of the networks the same between the TRPO and PPO2 agents is that it is relatively
easy to transfer the weights and biases of the policy and value function networks from one algorithm to another. This
process is visualized in 11. After the network parameters have been manually transferred into the PPO2 model, the
hyperparameter optimization scheme outline in figure 3 was performed to maximized the likelihood of improving the
current policy and obtaining a more stable control policy.

Figure 11: The transfer of a policy and value function network from TRPO to PPO2 [TRPO + PPO2 = PPO2*]

When looking at the results of the hyperparameter optimization in table 3 it can be seen that some parameters stayed
the same from the initial optimization of a untrained policy and value function networks. Specifically the number of
state steps until terminal state and discount factor remained about the same. The learning rate decreased by 2 orders of
magnitude which is expected since the network is already performing well in terms of episodic rewards, so its best to
make small changes in the network during backpropogation. The number of epochs when optimizing the surrogate
objective function is lower and at the lowest bound of the parameter optimization range. This makes sense because we
want continue to make small improvements to the policy during the gradient ascent of the policy networks loss. The
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clipping parameter controlling the policy update rate also follows the same trend, as it is greater than the previous initial
value for the untrained PPO2 agent. Higher clipping values lead to smaller changes in the policy, requiring even more
stringent constraints on what is learned and what is thrown away during optimization of the surrogate policy. A lower
Generalized advantage estimator factor also makes it more difficult to update the network since the loss function for
the clipped objective function is minimizing between the new and old policies. A smaller entropy coefficient helps to
reduce the number of random actions selected during training and should result in a more refined policy.

Comparing New PPO2* and Old Optimal Hyperparameters for ’MinitaurBulletEnv-v0’
Hyperparameter PPO2 PPO2*
Number of State Steps until Terminal State 1276 1277
Discount Factor 0.909 0.913
Learning Rate 3.17e-3 1.83e-5
Entropy Coefficient 3.59e-8 5.0e-4
Clipping parameter controlling policy update rate 0.345 0.379
Num. of epochs when optimizing the surrogate objective function 4 1
Generalized Advantage Estimator factor 0.988 0.861

Table 3: Optimal hyperparameters for PPO2 and PPO2*. Note PPO2* is not learning from scratch

PPO2* Agent
Following the discussion from the previous paragraph, we have some expectations about what we would like to see
from the PPO2* agent. The training results are shown in figure 12, and immediately we can observe that the agent is
able to achieve an average episodic reward of 3 ± 1.5 which is a significant improvement. Looking more closely at the
performance of the value function network we can see that from the initial 200,000 loss values the agent was able to
reduce the overtime with less variance overtime. The value function is not nearly as precise as what we observed from
TRPO in figure 10b but given the trend, this agent may need more time to train in order to converge to the optimal value
function. The biggest improvement is actually in the policy gradient loss when compared to the TRPO in figure 10c
where the PPO2* agent is able to even reduce the variance if you look closely into figure 12c. Altogether this agent is
an improved iteration on the policy and value function networks learned by TRPO. Further work is merited in the best
strategies for learning with multiple agents at different points of the training.

(a) Episodic Reward Start to Finish (b) Value Function Loss

(c) Policy Gradient Loss

Figure 12: PPO* Agent Training Results Superimposed at 200k and 4M training episodes

xv



4.4 Summary

The high fidelity physics environment and actuator models lay the framework for transferable policies from simulation
onto a real quadrupedal robot. We learned the importance of hyperparameter tuning when initiating the training process
for a new algorithm on a previously untested agent and environment. Utilizing Optuna to optimize the hyperparameter
space is a cost effective and easy to implement solution when utilizing a gym structured environment for training and
evaluation of the simulated agent. Hyperparameter optimization for this project consisted of optimizing 3 algorithms
each over 100 trials where the agent is trained 200,000 episodes per trial on a studied set of hyperparameters. Each agents
total hyperparameter optimization time took 24 hours to complete, which could be reduced in future implementation by
taking advantage of newer implementations of the stable-baselines algorithms where parallelization is extended to a
greater number of algorithms. We demonstrated that it is possible to transfer the policy and value function networks of
one algorithm to another with relatively little difficulty.
When comparing the relative performance of the PPO2, TRPO, and PPO2* agents we can look to figure 13 where
the black line is a moving average for the noisy reward signal. Initially, PPO2 converged nicely to a suboptimal local
minimum policy and never explored beyond the initial policy space. TRPO however, was able to explore early on and
near 1 Million episodes it begins to peak. It wavers slightly over the remaining training episodes and eventually is able
to reduce some of the initial variance in the reward signal. PPO2* has a similar trajectory to the initial PPO2 but does
not do well enough to minimize the noise in the reward signal and learn a more stable policy in the given training range.
After closer inspection of the value function loss in the previous section, it was hypothesized that much longer training
would be necessary for the convergence of the value function network. Overall PPO2* provides the best results but its
still desirable to obtain a more stable control policy.

Figure 13: Average Reward/1000 episodes for all 3 Agents
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